

Stacker

(Source: Stacker.doc Rev. 1.9 2016-03-10)

©

Büro für Datentechnik GmbH

D-35418 Buseck
Germany

AIDA Stacker Table of Contents

 Page 2

1 Table of Contents

1 TABLE OF CONTENTS... 2

2 REVISION INDEX .. 4

3 INTRODUCTION .. 5

4 OPERATING MANUAL .. 6

4.1 Basic Configuration ... 6
4.1.1 Stack Components Configuration Example ... 6

4.1.1.1 Adding Stack Components .. 6
4.1.1.2 Configuration of Stack Components .. 9

4.2 Stacker Main Window ... 13
4.2.1 Control Panel ... 14
4.2.2 Log Panel/Window ... 18

4.3 Stacker Menus and related Windows ... 19
4.3.1 Files ... 19

4.3.1.1 Create New Stack ... 19
4.3.1.2 Load Stack… .. 20
4.3.1.3 Save Stack .. 20
4.3.1.4 Save Stack as ….. 20
4.3.1.5 Offline Edit Config File … ... 20
4.3.1.6 Dump Config File … ... 20
4.3.1.7 Settings .. 20
4.3.1.8 Exit ... 23

4.3.2 Stack .. 23
4.3.2.1 Show Statistics ... 23
4.3.2.2 Stack Manager ... 25
4.3.2.3 Stack Comment ... 25
4.3.2.4 Define Replacement Table… ... 26
4.3.2.5 Cyclic Events… .. 26

4.3.3 Logging .. 26
4.3.3.1 Log File… ... 26
4.3.3.2 ID Filter… ... 28
4.3.3.3 Save Trace Buffer… ... 29

4.3.4 Window .. 29
4.3.5 Help menu "?" .. 29

4.3.5.1 Info… .. 29
4.3.5.2 AIDA System Settings … ... 30
4.3.5.3 Help .. 30
4.3.5.4 Component Info … ... 30

4.4 Stack Manager .. 30
4.4.1 Stack Manager Window ... 30
4.4.2 Using the Stack Manager .. 36

4.5 Cyclic Events ... 43
4.6 Replacement Handling .. 46

4.6.1 Replacement Mechanism .. 46
4.6.2 Using Replacements .. 46

4.7 Offline Editor ... 47

5 CAN COMMUNICATION VIA CANEASY IPC ... 53

AIDA Stacker Table of Contents

 Page 3

6 CONFIGURATION OF BEYOND COMPARE 3 TO COMPARE *.AIDA-CFG FILES AS

TEXT FILES ... 55

7 AIDA DRIVER-STACKS .. 59

7.1 Basics .. 59
7.2 The AIDA Interface Driver Concept... 60
7.3 The Structure of AIDA Drivers... 65
7.4 The API of the AIDA Interface Drivers .. 66

8 INSTALLATION ... 68

9 TABLE OF FIGURES .. 69

AIDA Stacker Revision Index

 Page 4

2 Revision Index

Date Author Rev. Description

2013-02-01 Karl H. Damm 1.1 First creation as printable document

2013-05-17 Michael Schreiber 1.4 Completion

2013-06-21 Karl H. Damm Chapter 4.3.5.2: AIDA System Setting details specified

Chapter 4.3.5.3 and 4.3.5.4: CanEasy/BSKD7 installation
specific info added

Chapter 5 "CAN Communication via CanEasy IPC" added

Chapter 7: Correction: BDiag.component instead of
BSKD.component

2013-09-27 Michael Schreiber

Karl H. Damm

 Chapter 4.4.1 "Stack Manager Window": Update: new
button "Assign" added

Various figures: screenshots of Stack Manager Window
updated

2013-11-05 Karl H. Damm 1.6 Chapter 6 " Configuration of Beyond Compare 3 to
compare *.aida-cfg files as text files" added

2014-05-22 Hans Schmidts 1.7 Hyperlinks updated

2014-06-13 Hans Schmidts 1.8 Bookmarks (anchors in html) added

2016-03-10 Hans Schmidts 1.9 "Symbol" chars replaced (for Firefox etc.)

2016-10-13 Andre Decher 1.10 Chapter 5 "CAN Communication via CanEasy IPC" Update:
display a warning message only if CanEasy.exe process
cannot be found

AIDA Stacker Introduction

 Page 5

3 Introduction

The AIDA Stacker is part of the AIDA tool set as well as of the CanEasy/BSKD7 tool

set. It combines two functions:

1. Configuration and parameterization of AIDA Stacks.

The AIDA Stacker allows the configuration and parameterization of AIDA Stacks.

These stacks define the communication structure and are fundamental to other

AIDA tools. An AIDA stack is built of AIDA Stack Components, for details see in

particular the chapters Basic Configuration and Stack Manager. The AIDA

Components are described in a separate document.

2. Monitoring communication and sending messages.

The AIDA Stacker is also a simple receiver and transmitter application. It listens to

stack communication an shows the received messages in a log window or saves

received data to a log file. There are filter options to restrict the incoming messages

to be logged depending on stack levels, event types etc. For details on monitoring

and logging see especially the chapters Control Panel and ID Filter….

The AIDA Stacker also allows to send spontaneous messages as well as defining

cyclic messages. Details can be found in the chapters Control Panel and Cyclic

Events….

../stack/aida_components.html

AIDA Stacker Operating Manual

 Page 6

4 Operating Manual

4.1 Basic Configuration

The AIDA tool set (as well as parts of the CanEasy/BSKD7 tool set) is based on pre-

configured communication stacks, that are assembled using the AIDA Stacker. These

stacks are stored in the form of a *.aida-cfg file. These files define the basis of

communication for BSKD, AIDA Communicator, AIDA Tracer and other AIDA

applications.

These stacks consist of stack components that are stacked on each other. Most

components have parameters to configure the parameter behavior. The AIDA Stacker

allows creating new stack configuration files as well as loading and modifying existing

stack configuration files.

In the following example the typical workflow for the creation of a simple CAN com-

munication stack (11bit identifier length, 100 kbps) is demonstrated:

4.1.1 Stack Components Configuration Example

4.1.1.1 Adding Stack Components

Start AIDA_Stacker.exe and choose menu item Files – Create New Stack as shown in the

following figure:

AIDA Stacker Operating Manual

 Page 7

Figure 1: Create New Stack

AIDA stacks consist of stack components, that represent the communication layers.

AIDA Stacker provides the Stack Manager Window to add these components together.

Select menu item Files – Create New Stack to open the stack manager window.

Figure 2: Stack Manager

AIDA Stacker Operating Manual

 Page 8

Figure 3: Add Component

The Stack manager window is the central place to add and remove components to

stacks. When adding components, the order of the components is ‘top-down’, that

means that higher layers are on the top and lower levels (closer to the hardware) are on

the bottom. The components have to be added in top-down sequence. For details of the

stack concept see the advanced chapter AIDA Driver-Stacks.

For this example, the stack will consist of two components:

• at first the higher (top, here Filter) stack component (communication layers) is

added:

• the last stack component (here CAN) represents the physical layer.

AIDA Communicator and AIDA Tracer typically requires a filter component, which is

added with the stack manager Add button. The following dialog appears after pressing

the Add button.

AIDA Stacker Operating Manual

 Page 9

Figure 4: Choose Filter Component

Select Filter and press button Add Selected Component.

As next and last component add the CAN component by selecting CAN and pressing

the Add Selected Component button again. Close the dialog by pressing the Cancel

button.

4.1.1.2 Configuration of Stack Components

Every stack component has a set of parameters. When a component is added to the

stack, these parameters are set to their default values. Before the new stack can be used,

the stack components parameters have to be adjusted.

The default settings of the Filter component allow reception of all communication

messages. (For detailed information on filter configuration refer to AIDA Component

descriptions.)

To configure the CAN component, select CAN in the Stack list and press Configure:

AIDA Stacker Operating Manual

 Page 10

Figure 5: Stack Manager

This will open the parameter dialog for the CAN component:

Figure 6: CAN Component Parameterization

AIDA Stacker Operating Manual

 Page 11

Hint: To change the configuration settings of the CAN component, the component must

be disconnected first by setting the ChannelMask to $0. This is the default setting of a

newly added CAN component.

Now set stack parameter Bitrate to 100000.

Figure 7: Set Bitrate

"11bit CAN identifier length" is set by parameters AcceptanceCode and

AcceptanceMask equal $0 (see comment in corresponding stack dialog).

The last step is the configuration of the ChannelMask corresponding to the attached

CAN interface respectively the chosen CAN driver. Mask different from $0 refer to

actual CAN channels, selecting them will activate CAN interface immediately. Hint:

Parameter values that enable the communication interface are shown with a symbol

right to the value as shown in Figure 8: Setting Parameter ChannelMask. As soon as the

channel mask is set to the right value, the Stacker log window in the AIDA Stacker

main window shows possible communication data received on the CAN bus.

AIDA Stacker Operating Manual

 Page 12

Figure 8: Setting Parameter ChannelMask

To save the sample stack configuration select Files – Save Stack as... and chose file

name C:\test.aida-cfg.

AIDA Stacker Operating Manual

 Page 13

4.2 Stacker Main Window

The AIDA Stacker main window is split into two sections. The upper section is the

control panel; the lower section contains the log window/panel.

The layout depends on the selected user mode, which is either expert or basic mode.

Figure 9: AIDA Stacker main window – Expert Mode

In basic mode the advanced controls are hidden:

Figure 10: AIDA Stacker main window – Basic Mode

AIDA Stacker Operating Manual

 Page 14

4.2.1 Control Panel

The following figure shows the control panel in the expert mode:

Figure 11: AIDA Stacker main window: control panel

Stack Status group:

 Stack Status shows the status of the current stack configuration

• Complete: is set when the stack is complete and can be set to online state

• StackOnline: is set when the stack is online, that means the hardware driver

component has opened a communication port

• StackForcedOffline: is set when the stack is forced offline by the

application

• InvalidStatus should normally not be seen by the application.

See also the related AIDA Stacks API documentation for

AIDA_dwGetStackStatus.

 Set Stack Online / Offline: Sets an AIDA Stack to online / offline state. The

buttons are only available when a valid stack configuration is ready to run. If the

stack configuration is not complete, the buttons are grayed out. See also the

related AIDA Stacks API documentation for AIDA_boSetStackOnline and

AIDA_boSetStackOffline.

Log File group:

 Log File: Shows the path of the selected log file. Double click on the label to

select a log file.

 Start / Pause Logging: When a log file has been selected, the logging to the

given file can be started and paused here. When logging to file is active, the

logging can be interrupted and continued later.

 Close Log File: Closes the log file. This will also release any file locks (i.e.

unless the file is released, it may not be possible to move or rename the log file).

../stack/GetStackStatus.html
../stack/SetStackOnline.html
../stack/SetStackOffline.html

AIDA Stacker Operating Manual

 Page 15

 Settings: Open the Settings dialog, see section Settings.

 Filter Mask - Level: Selects the Stack levels that the AIDA Stacker shall log. The

value is a bit mask where bit 1 (counted from zero) stands for Stack level 1, bit 2

stands for Stack level 2, etc. With the arrow button on the right side of the mask

field, a level mask editor dialog pops up.

Figure 12: Level Mask Selector dialog

 In the level mask selector, all stack levels can be enabled or disabled separately

by checking the corresponding check box. The Default button unchecks all

parameters, corresponding to a mask setting of 0. This setting has a special

meaning, as it will output the events for the uppermost level only (i.e. it does not

filter out all messages, as the zero suggests). The Show All button enables all

levels.

 Filter Mask - Event: Select the event types which the AIDA Stacker shall log.

The value is a bit mask where bit 0 corresponds type 0 (ReceiveData), bit 1

stands for type 1 (TransmitData), etc. (ReceiveData, TransmitData,

TransmitDataDone, Status, Timer). For details see the AIDA Stacks API

documentation for AIDA_tenEventType.

 With the arrow button on the right side of the mask field, a level mask editor

dialog pops up.

Figure 13: Event Mask Selector dialog

../stack/EventType.html

AIDA Stacker Operating Manual

 Page 16

In the event mask selector, all event types can be enabled or disabled separately

by checking the corresponding check box. The None button unchecks all event

types, corresponding to a mask setting of 0.. The Select All button enables all

levels.

Timer Settings:

 Timer: Selects the interval for the uppermost component to generate timer

events.

Send Data:

 Data: This text box allows editing a sequence of hexadecimal bytes. Press

<ENTER> to send an event with the given data.

 SrcID: Set the source ID (low Dword only) to be used in transmitted events.

 DstID: Set the destination ID (low Dword only) to be used in transmitted events.

 Data Flags: Set flags for the data part of transmitted events.

 Level: Choose the stack level to which the event shall be transmitted. Leave

empty or enter 0 for the top level (default).

 CStart: Similar to pressing <ENTER> in the input box Data, but additionally set

the flag StartCommu in the event. See the related AIDA Stacks API

documentation for AIDA_tstEvent#dwFlags.

 CStop: Similar to pressing <ENTER> in the input box Data, but additionally set

the flag StopCommu in the event. See the related AIDA Stacks API

documentation for AIDA_tstEvent#dwFlags.

Cyclic Events Panel:

 Cycle Count: Number of cycles (0 means infinite).

 Period [ms]: Cycle time in Milliseconds.

 Add: Creates and activates a new cyclic event using the specified Data, SrcID,

DstID, Data Flags, Level, Cycle Count and Period [ms] values. Appends a

corresponding new entry to the table in the Cyclic Events window. See .

 Manage Events: Opens the Cyclic Events window, see section Cyclic Events….

 Group-Panel Statistics (see also section Show Statistics):

• Msg Tx:

The number of transmitted AIDA events since the stack has been loaded.

../stack/Event.html#dwFlags
../stack/Event.html#dwFlags

AIDA Stacker Operating Manual

 Page 17

• Msg Rx:

The number of received AIDA events since the stack has been loaded.

• Err Tx:

The number of transmitted AIDA events with any error flags set (but not

AIDA_nRecvQueueOverrun) since the stack has been loaded.

• Err Rx:

The number of received AIDA events with any error flags set (but not

AIDA_nRecvQueueOverrun) since the stack has been loaded.

• Ovr:

The number of AIDA events with error flag AIDA_nRecvQueueOverrun set,

i.e. the number of events lost because a higher component did not empty the

receive queue.

See also section Show Statistics.

AIDA Stacker Operating Manual

 Page 18

4.2.2 Log Panel/Window

In the log window, the received messages are protocolled. It is possible to scroll back in

the message buffer, the buffer stores up to 2000 lines.

Figure 14: AIDA Stacker main window: Log panel/window

The components of the log window are:

 : Select absolute (t) or relative (Delta t) time stamps in the log window.

This also affects the log files, when the logging format is configured to ‘Same as

log window’.

 Freeze: Freezes the log window contents. When the window is frozen, the

communication still continues; events received while the window was frozen are

stored and are shown after returning from freeze state.

 Clear: Clears the trace buffer and the contents of the log window.

 Save: Save trace buffer (the contents of the log window) to file.

 To Clipboard: Copies the log window contents to the system clipboard.

The log output is formatted as a table, the columns are as shown in the headline:

1. Timestamp:

The timestamp for the shown message or event. Depending on the absolute or

relative selection, either the time since the last message/event is shown

(relative), or the absolute time (from Windows PC system timer) is shown.

2. Cyclic:

When the message was generated by the AIDA Stacker itself using cyclic

AIDA Stacker Operating Manual

 Page 19

events, the message is marked with a dot in this column. For all other messages

or events this column entry remains empty.

3. ID: Event ID that AIDA has assigned to this message/event internally

4. Level:

Stack level that generated the message. Depending on the filter mask settings for

the levels to be logged, the same message can be multiply shown, as every stack

component, that handles the message and passes it to the next level, triggers an

indication.

5. Type:

The type is one of the following:

• Status

• Stacker message

• ReceiveData

• TransmitData

• TransmitDataDone

6. Source ID and Destination ID as passed from the AIDA component.

Remark: availability of IDs depends on the stack configuration, some

components do not generate IDs. In this case, the ID entry shows ‘--------‘.

7. DF:

See Component documentation on Data Flags

8. Data:

This column either shows the message text for an event or the contents of the

message received or transmitted as a sequence of hexadecimal bytes. The

number of bytes that are shown per line can be configured in the settings dialog.

4.3 Stacker Menus and related Windows

4.3.1 Files

Create and configure a new stack configuration or open an existing configuration. In

addition you can change the global settings for the AIDA Stacker.

4.3.1.1 Create New Stack

Creates a new empty stack configuration. As every AIDA Stacker application instance

only processes one stack configuration at a time, previously active stack configurations

are closed. In case of unsaved changes to the previous configuration an option for

saving will appear.

AIDA Stacker Operating Manual

 Page 20

4.3.1.2 Load Stack…

Opens a file dialog box to select and load an existing AIDA Stack configuration

(*.aida-cfg).

4.3.1.3 Save Stack

Saves the current AIDA Stack configuration to disk. If a new "unnamed" stack was

created and shall be stored the first time, a file dialog window is opened to choose the

filename (incl. directory) (*.aida-cfg).

4.3.1.4 Save Stack as …

Opens a file dialog window. Choose an existing directory and type a filename to save

the current AIDA Stack configuration with a new name (*.aida-cfg).

4.3.1.5 Offline Edit Config File …

Opens a file dialog box to select and load an existing AIDA Stack configuration

(*.aida-cfg). Details are described in chapter Fehler! Verweisquelle konnte nicht

gefunden werden..

4.3.1.6 Dump Config File …

Get information on file structure of a stack configuration file.

Opens a file dialog box to select and load a AIDA Stack configuration file (*.aida-cfg).

The configuration file is examined by the command line tool dumpconfig.exe, that is

part of the AIDA tool distribution. After processing, the result is automatically opened

with the default text editor of the Windows system.

4.3.1.7 Settings

Opens the AIDA Stacker Settings window:

AIDA Stacker Operating Manual

 Page 21

Figure 15: AIDA Stacker Settings window (Appearance and Stack)

 Main Window Appearance: The Use Expert mode checkbox: In expert mode, the

main window shows the full user interface. If not checked, the interface is

shown in basic mode, with a reduced user interface.

 Parameter Dialog: The Highlight changeable Params checkbox: If checked, the

listbox entries for parameters that can currently be changed are drawn with a

bold font (in the Parameters listbox in the Component Parameterization

window). On some machines, the AIDA Stacker user interface reacts slow when

this option is selected, in this case the function should be disabled.

 Log Window: The Wrapping Position slider and number input box: Set the

number of hexadecimal bytes to be shown in a line before wrapping to the next

line. As changes in the layout will clear the log window history, the user must

confirm the new wrapping position to make the change effective.

 The Log Window Color panel: Set text color and background color of the log

window.

AIDA Stacker Operating Manual

 Page 22

 The Restore Defaults checkbox: Load default values when restoring a Stack

from a Stack configuration file (*.aida-cfg), i.e. no replacement of parameter

values with corresponding environment variable exists.

 The Use Remote Environment checkbox: Configure usage of the remote

environment when restoring a Stack which contains a NETClient Component.

 The Use managed ID mode: When checked, managed IDs are forcibly used

while loading a new Stack.

 Create/Restore Offline: If checked, the stack is created offline. This allows to

load or edit the stack even when actual hardware components (e.g. CAN

adapter) are not available on the PC.

Figure 16: AIDA Stacker Settings window (Logging)

 Use as default path: This setting selects the default path that is used when AIDA

Stacker suggests a file name and path for storage of log files. Available options

are:

../stack/NETClient.html

AIDA Stacker Operating Manual

 Page 23

• Same path as .aida-cfg file

• TEMP directory

The path is read from the environment variable ‘TEMP’.

• same as in last session

With the Open in Explorer button, the folder to contain the log files is opened in a

new explorer window.

 Log File Settings:

• Use same format as for log window (wrapping, no CSV)

The log file uses the same format as the log window; lines are wrapped

• No wrapping (CSV): The log file uses one line per event, data is not wrapped.

 The Locale Settings and the Use Digit Group Separator checkbox:

Configure the format of numeric values in the log window:

• System: Use the user’s settings.

• German: Always use German format (e.g. 123.456.789,012345 or

123456789,012345, depending on the value of the Use Digit Group

Separator checkbox)

• English: Always use US format (e.g. 123,456,789.012345 or

123456789.012345, depending on the value of the Use Digit Group

Separator checkbox)

 Closes the window (same as the close button ‘X’ in the window’s title bar).

4.3.1.8 Exit

Terminates the AIDA Stacker application instance. In the case of unsaved changes, a

save dialog appears.

4.3.2 Stack

Configuration of the stack and parameterization of its contained stack components and

plugins.

4.3.2.1 Show Statistics

Opens the Statistics window (non-modal):

AIDA Stacker Operating Manual

 Page 24

Figure 17: Statistics window

The Statistics window shows several sets of information about transmitted and received

AIDA events and user data bytes as well as (if supported by the corresponding

components) information about the average loads and peak loads.

It lists the following 5 operating modes for each component in the current Stack:

 Normal operation: Shows the statistics data for normal operation. The statistics

data will be updated automatically by the AIDA library without intervention of

the components.

 Emergency operation: Shows the statistics data for "emergency" operation. The

exact meaning depends on the component for which the data is retrieved, e. g.

the CAN component defines single wire CAN as emergency operation. If a

component sets the corresponding warning flags the information will be updated

automatically, otherwise the component has to update the information itself.

 Errors: Shows the statistics data for operations in case of errors. The exact

meaning depends on the component for which the data is retrieved, e. g. the

CAN component defines error frames as error operations but will only count the

frames and will not calculate the bus load in this case. If a component sets the

AIDA Stacker Operating Manual

 Page 25

corresponding error flags the information will be updated automatically,

otherwise the component has to update the information itself.

 Average load: Shows the average load of the transport media in units of 0.1%.

Note that this information cannot be generated automatically but must be set up

by the corresponding component for which the statistics data is retrieved.

Currently only the Vector CAN component calculates the average load.

 Peak load: Shows the peak load of the transport media in units of 0.1%. Note

that this information will only be available if the component updates the Average

load statistics data.

The Statistics window contains 2 buttons:

 Clear: Clears all statistics information for all stack levels.

 Done: Closes the window (same as the close button ‘X’ in the window’s title

bar).

Each set of transmit and receive data for a given operating mode contains the following

information:

• TX events: The number of transmitted AIDA events since the statistics

information last has been cleared.

• TX bytes: The number of transmitted user data bytes since the statistics

information last has been cleared.

• RX events: The number of received AIDA events since the statistics information

last has been cleared.

• RX bytes: The number of received user data bytes since the statistics information

last has been cleared.

See also the related AIDA Stacks API documentation for AIDA_tstStatistics and

AIDA_tstStatisticsSet.

4.3.2.2 Stack Manager

Opens the Stack Manager window.

The stack manager is described in chapter Stack Manager.

4.3.2.3 Stack Comment

Opens the Stack Comment window:

../stack/Statistics.html
../stack/StatisticsSet.html

AIDA Stacker Operating Manual

 Page 26

Figure 18: AIDA Stacker "Stack Comment" window

Every stack can have a comment attached that can hold up to 255 characters. It allows

storing remarks on the stack and has no effect on the stack communication.

The stack comment windows fields are:

 Text input box Comment: the comment is part of the Stack configuration file and

can be edited. Changes are applied immediately.

 Button OK: Closes the window (same as the close button ‘X’ in the window’s

title bar).

4.3.2.4 Define Replacement Table…

Opens the Replacement table window. The replacement handling is explained in chapter

Replacement Handling.

4.3.2.5 Cyclic Events…

Opens the Cyclic Events window. This windows lists all cyclic messages that are

defined for the current stack configuration. The details on cyclic events are described in

chapter Cyclic Events.

4.3.3 Logging

Configuration of a background log file and saving of the current trace buffer to a log file

can be done here. A corresponding ID filter list can be configured and applied.

4.3.3.1 Log File…

Opens a file dialog to select the file name that shall hold the logged data. When the

dialog opens, the name is already preset with the stack’s name followed by the date and

time (e.g. SampleStack_20130201_1447.log). The path is preset too, it is either the

AIDA Stacker Operating Manual

 Page 27

directory where the stack configuration file is saved, the TEMP directory or the position

where the last log file was written to (see settings dialog). Alternatively this dialog can

be accessed by double clicking the Log file name in the control area of the main

window. The menu is not available unless a stack is loaded or configured.

All messages are either stored in Microsoft Excel compatible CSV format (comma

separated value) or alternatively in the same format as used in the log window. Despite

of its name, the comma separated values format do not always use commas to separate

the columns. When the format of the timestamps already contains commas, the

separator character is automatically changed into a semicolon.

The format can be configured within the Settings window (section Log File Settings),

which is accessible via menu entry Files – Settings… or main window Settings button.

The following examples show the log file output:

1. Same format as log window

TimeStamp C ID Level Type SrcID DstID DF Data

--

 23.095,0ms 0001001C 1 TransmitData --------- --------- -- 11 22 33

 0,0ms 0001001C 1 Status RestartRXTimeoutStatus: 75,0

 RestartTXTimeoutStatus: 75,0

 25,0ms 0001001C 1 ReceiveData --------- --------- -- Flags: $00820000 (E:Recv, E:Timeout)

 0,0ms 0001001C 1 TransmitDataDone --------- --------- -- 11 22 33

 166,0ms 0001001E 1 TransmitData --------- --------- -- 11 22 33

 0,0ms 0001001E 1 Status RestartRXTimeoutStatus: 75,0

 RestartTXTimeoutStatus: 75,0

 25,0ms 0001001E 1 ReceiveData --------- --------- -- Flags: $00820000 (E:Recv, E:Timeout)

 0,0ms 0001001E 1 TransmitDataDone --------- --------- -- 11 22 33

 151,0ms 00010020 1 TransmitData --------- --------- -- 11 22 33

 0,0ms 00010020 1 Status RestartRXTimeoutStatus: 75,0

 RestartTXTimeoutStatus: 75,0

 25,0ms 00010020 1 ReceiveData --------- --------- -- Flags: $00820000 (E:Recv, E:Timeout)

2. No wrapping, CSV enabled

TimeStamp C ID Level Type SrcID DstID DF Data

--

2.916.501.646,0; 177.062,0; 0001002E; 1;TransmitData ;---------;---------; --;;11;22;33

2.916.501.646,0; 0,0; 0001002E; 1;Status ; ; ; ;;RestartRXTimeoutStatus: 75,0 RestartTXTimeoutStatus: 75,0

2.916.501.671,0; 25,0; 0001002E; 1;ReceiveData ;---------;---------; --;Flags: $00820000 (E:Recv, E:Timeout);

2.916.501.671,0; 0,0; 0001002E; 1;TransmitDataDone;---------;---------; --;;11;22;33

2.916.501.822,0; 151,0; 00010030; 1;TransmitData ;---------;---------; --;;11;22;33

2.916.501.822,0; 0,0; 00010030; 1;Status ; ; ; ;;RestartRXTimeoutStatus: 75,0 RestartTXTimeoutStatus: 75,0

2.916.501.847,0; 25,0; 00010030; 1;ReceiveData ;---------;---------; --;Flags: $00820000 (E:Recv, E:Timeout);

2.916.501.847,0; 0,0; 00010030; 1;TransmitDataDone;---------;---------; --;;11;22;33

2.916.501.974,0; 127,0; 00010032; 1;TransmitData ;---------;---------; --;;11;22;33

2.916.501.974,0; 0,0; 00010032; 1;Status ; ; ; ;;RestartRXTimeoutStatus: 75,0 RestartTXTimeoutStatus: 75,0

2.916.501.999,0; 25,0; 00010032; 1;ReceiveData ;---------;---------; --;Flags: $00820000 (E:Recv, E:Timeout);

AIDA Stacker Operating Manual

 Page 28

4.3.3.2 ID Filter…

Opens the ID filter window.

This table configures which events the AIDA Stacker shall show in its log window (and

log to a files respectively). Furthermore the assignment of symbolic names to event IDs

is possible. Assigning symbolic names is done by entering the event’s stack level, ID

and the symbolic name in a table row. When the table terminates with an asterisk ("*")

in the stack level column, the AIDA Stacker will show all events no matter whether a

symbolic name has been assigned. This table only affects data events.

Figure 19: AIDA Stacker "ID filter" window

The ID filter table has four columns:

 Filter number

 Table column Stack level: the event’s stack level.

 Table column ID: the event’s ID.

 Table column Name: here you can assign a symbolic name to the event

The ID filter window contains 3 buttons:

AIDA Stacker Operating Manual

 Page 29

 Clear all: Deletes all existing table entries.

 Apply: Applies the currently displayed settings.

 Done: Closes the ID filter window (same as the close button ‘X’ in the window’s

title bar).

4.3.3.3 Save Trace Buffer…

Saves the current trace buffer as shown in the log window, with the last 2000 events.

The default filename is preset as a combination of the name of the stack configuration

file followed by the current date and time e.g.: Test_Stack_20130419_1119.log for

Test_Stack.aida-cfg. A message box with the filename and full path is shown when the

triggered action is finished successfully.

The buffer contents is stored in the format that is configured in the Settings dialog

(section Log File Settings), either in Microsoft Excel compatible CSV format (comma

separated value) or alternatively in the same format as used in the log window.

4.3.4 Window

This dynamic menu lists all open secondary, non-modal windows, e.g. the "Settings"

window (see section 0), the "ID filter" window (see section 4.3.3.2), the "Statistics"

window (see section 4.3.2.1), the "Stack comment" window (see section 4.3.2.3), the

"Replacement table" window (see section 4.3.2.4), the "Cyclic events table" window

(see section 4.3.2.5), the "Stack Manager" window (see section 4.3.2.2), the various

"Component Parameterization" windows (see section 4.3.2.2). Select one of the

dynamic menu entries to bring the corresponding window to the front of the desktop.

4.3.5 Help menu "?"

Gives some help and additional info like AIDA Stacker Revision, license information

and additional info …

4.3.5.1 Info…

Shows information about the currently used AIDA interface version and AIDA Stacker

revision (and possibly also the AIDA SDK or RTE Platform version) as well as detailed

information about the licensed AIDA version, Windows applications, PI modules, Stack

Components and Plugins. The license information is extracted from the related license

file (*.lic), which must be present within the Stacker executable directory.

AIDA Stacker Operating Manual

 Page 30

4.3.5.2 AIDA System Settings …

Starts the AIDA System Settings Wizard to change the system settings (license file(s),

serial port(s), CAN component) for the AIDA installation.

Note: This menu entry is only available when the Stacker is contained in a standard

AIDA installation. When the Stacker is installed as part of a CanEasy/BSKD7

installation it is not available.

4.3.5.3 Help

Opens this documentation (HTML version) in the default web browser or, in case of a

CanEasy/BSKD7 installation, in the Microsoft HTML Help Viewer.

4.3.5.4 Component Info …

Opens the AIDA Stack Components / Plugins and API documentation (HTML

version) in the default web browser or, in case of a CanEasy/BSKD7 installation, in the

Microsoft HTML Help Viewer.

4.4 Stack Manager

The Stack Manager is used for

• Adding and removing components

• Accessing the parameter dialogues for all components to adjust parameters

• Rearranging the structure of an existing stack configurations.

4.4.1 Stack Manager Window

AIDA Stacker Operating Manual

 Page 31

Figure 13: Stack Manager window

 Stack: A list of the stack components and their respective level within the

current stack. Double click to open the Component Parameterization window

(see the corresponding description further below) for the selected stack

component.

 Add: Pressing this button opens the Add Component dialog window (see the

corresponding description further below), which allows it to select a stack

component, e.g. CAN.component, to add to the top of the stack.

 Unload: Pressing this button unloads the selected stack component and all the

components below it (with a higher stack level). These stack components are

stored with their frozen parameter settings and are accessible via the Unloaded

Components listbox, so that they can be added to the stack again later on.

 Configure: Pressing this button opens the Component Parameterization window

(see the corresponding description further below) for the selected stack

component.

 Unload Components: A list of the stack components that have been unloaded

from the stack (with frozen parameter settings).

 Button Reload: Return the selected unloaded component back to the top of the

stack. When a component is returned to the stack, the parameters of the

AIDA Stacker Operating Manual

 Page 32

component are set to its default values (i.e. the values in the snapshot are not

automatically assigned).

 Drop: Removes the selected stack component from the Unloaded Components

list.

 Parameter Snapshots: List of frozen parameter sets. Every snapshot is identified

by its timestamp.

 Snapshot: Freeze all the parameters for components that are currently on the

stack.

 Delete: Delete the selected snapshot from the list of frozen parameter sets.

 Status: The number of different parameter values in the current stack

configuration in comparison with the selected snapshot.

 Button Assign: Assigns the reference values for all parameters that are different

from the value in the snapshot. Only values that have the attribute

‘ChangeAnytime’ are assigned. When the Shift key is hold pressed while

clicking the button, the limitation on the attribute is omitted and the function

tries to assign all reference values that are different. Note that attempting to

change the values may not be successful for all values, depending on their

changeability property.

 Compare Parameters with Reference: Structured list of all loaded stack

components with all parameters.

• Double click to open the Component Parametrization window (see the

corresponding description further below) for the selected stack

component and parameter.

• Double click with Shift keys hold pressed to try to assign the snapshot

reference value.

 The parameters are marked with one of these three symbols:

• : The parameter value is the same as the corresponding snapshot value

• : The parameter value is different from the value in the snapshot

• : The parameter is not contained in the snapshot

 Difference-Button : Select whether to show all parameters or only those

parameters that have values different to their corresponding value in the

currently selected snapshot.

 Toggle-Button Params / Values: Only list parameter names resp. list parameter

names with the assigned values.

AIDA Stacker Operating Manual

 Page 33

 Button Copy List to Clipboard: Copy the list of stack components and parameters

with their assigned values to the system clipboard.

 Button Ok: Closes the window (same as the close button ‘X’ in the window’s

title bar).

Pressing the button Add in the Stack Manager window opens the Add Component dialog

window.

Figure 20: Add Component dialog window

 Components: A list of all components found in the AIDA_Stacker.exe directory.

 Component Info: The stack component’s file name, filter version and full file

system path.

 Add Selected Component: Adds the selected stack component to the top of the

stack.

 Search in other location: Opens a file dialog.

 Cancel: Closes the dialog window (same as the close button ‘X’ in the window’s

title bar).

AIDA Stacker Operating Manual

 Page 34

Pressing the button Configure in the Stack Manager window opens the Component

Parameterization window.

Figure 21: Component Parameterization window (non-modal), here for CAN

 Stack level and Component: The level of the component within the stack and the

stack component’s name, e.g. CAN or Filter.

 Parameter: All parameters of the stack component. Not all parameters can be

changed at any time, e.g. most parameters require the stack to be set offline

before changing is allowed. In the parameter list, the parameters that are

currently allowed to be changed are shown in bold font.

 Reference: When a parameter snapshot was made the reference value is shown

here, either in red color when the snapshot value is different from the current

setting, or in green color, when both values are the same. In case of different

values, also an Apply button is visible. Pressing this button assigns the snapshot

reference value to the parameter.

 Text input box Value: The value of the parameter which is selected in the

listbox. Most of the parameters are of type Dword or Long, a few are of type

Real or String. See also .

AIDA Stacker Operating Manual

 Page 35

 Text input box Replacement: Optional. The name of the environment variable

containing the replacement value for the selected parameter. The parameter’s

value is replaced with the value given by the process environment when

restoring the stack from the configuration file.

 For portable AIDA stack configurations, commonly you would use a project-

specific environment variable for workstation-dependent parameters like the

CAN Component’s ChannelMask (bit 0 and 1 represent virtual channels if these

are supported; physical channels are always located on bit 2 and above) or the

NETClient Component’s Server (name of the AIDA stack network server; a

DNS name or an IP address). E.g. for a project "DC_W222_KI" you could

define corresponding environment. variables

"DC_W222_KI_CAN_ChannelMask" and "DC_W222_KI_NETClient_Server"

with e.g. values "4" and "BSK-WST-070".

 See also the related descriptions in the section Define Replacement Table….

 Comment (read-only): A short description of the selected parameter.

 Textbox Type (read-only): The type of the selected parameter. Possible values

are: String, DWord, Long or Real. For details see the related AIDA Stacks API

documentation for AIDA_tenParamType.

 Attributes (read-only): Attributes of the selected parameter. Possible values are:

• ChangeAnytime

• ChangeOnlyBeforeLoad

• ChangeOnlyAfterLoad

• ChangeOnlyBeforeComplete

• ChangeOnlyAfterComplete

• ChangeOnlyWhen Offline

• ChangeOnlyWhenOnline

• ChangeStackStatus

• ReadOnly

• Change

• OnlyAfter

• CompleteWhenOffline

• ChangeOnlyAfterCompleteWhenOnline

• BroadcastWhenOffline

• BroadcastWhenOnline

For details see AIDA_tenParamAttrib.

 Dyn. Flags (read-only): The dynamic flags of the selected parameter.

Possible values are:

• Changeable

• DontSave

• DontEdit

../stack/ParamType.html
../stack/ParamAttrib.html

AIDA Stacker Operating Manual

 Page 36

For details see AIDA_tstParam#bParamFlags.

 Textbox Stat. Flags (read-only): The static flags of the selected parameter. The

only possible value is: Attachable.

 For details see AIDA_tstParam#bParamFlags.

 Button Help: Opens the documentation (HTML) for the stack component in the

default web browser. See the related AIDA Stack Components documentation.

 Button Done: Closes the window (same as the close button ‘X’ in the window’s

title bar).

4.4.2 Using the Stack Manager

The typical workflow for using the Stack Manager is setting up stacks from scratch, as

demonstrated in chapter 4.1.1 Stack Components Configuration Example. Components

are added step by step and their parameters are adjusted according to the requirements

of the specific project. It is important to understand, that the order of adding

components and changing parameters is not arbitrary. The components plugin interfaces

can depend on their parameter settings, and the changeability or even the existence of

some parameters depends on the setting of other parameters. For example

• When a stack configuration starts communicating actively, other parameters a

locked and cannot be changed, as long as the communication is active. (This can

be seen in example Stack Components Configuration Example, where the stack

becomes active after assigning the channelmask value).

• The CAN component may not fit to its neighbor component if the packed

messages are configures to be longer than 8 bytes.

Sometimes an existing stack configuration needs to be changed in a way, that affects

adding or removing components that are not at the bottom of the stack. As components

can only be added to the bottom of the stack or respectively components can only be

removed from the bottom end of the stack, this is a special situation. To perform such

operations, all components below have to be temporarily removed, until the position to

be changed is at the bottom of the remaining stack. Then the component in question is

added (or removed respectively). In the last step, the temporarily removed components

have to be returned by adding them back to the modified stack. As adding components

always involves that their parameter are set to their defaults, the parameters will be

different from their original settings in most cases. To help the user to assign these

original values back to the components, that have been temporarily removed, the Stack

Manager provides support for parking components and for making snapshots of the

parameters.

../stack/Param.html#bParamFlags
../stack/Param.html#bParamFlags
../stack/index_components.html

AIDA Stacker Operating Manual

 Page 37

This is realized by the Unload, Reload and Snap shot buttons and the Lists for Unloaded

Components and for Parameter Snapshots.

In the following an example for removing a component from an existing stack is

demonstrated:

Figure 22: Original Stack without changes

Figure 22 shows the original stack. It consists of five components, from top to bottom

BDiag, Filter, Checksum, Packer, and COM. In the example, the Checksum

component should be removed. As described above, this cannot be done without also

removing Packer and COM. So by selecting the Checksum component and pressing

Unload, all three components are unloaded:

AIDA Stacker Operating Manual

 Page 38

Figure 23: All components below removed

In Figure 23 the Checksum component and all components below have been removed

from the stack. The removed components have been moved to the Unloaded

Components list.

As there was no previously made snapshot, the AIDA Stacker has automatically made

one by internally storing the parameter values for all parameters in all components

before removing the components from the stack. This can be seen in the Parameter

Snapshots list, where a new entry has appeared. It is also possible to make multiple

snapshots by pressing the Snapshot button. Every Snapshot is listed with the time stamp

when it was created.

To obtain a new stack, which corresponds to the original stack with the Checksum

component removed, the other components have to be returned. This is done by

selecting Packer in the Unloaded Components list and pressing the Reload button.

AIDA Stacker Operating Manual

 Page 39

Figure 24: Returned the Packer Component

Then the COM component is returned to the stack in the same way:

AIDA Stacker Operating Manual

 Page 40

Figure 25: COM component reloaded

In Figure 25, after returning the COM component, a difference shows up. When the

COM component was reloaded from the unloaded components list, it was configured to

the COM default settings. These have been different from the COM settings in the

original stack configuration. The status shows that one parameter is different. In the

Compare Parameters with Reference display on the right side of the Stack Manager

window, the reason for this difference can be seen. As the COM component has a

difference, it is shown with a red symbol in front, while the other components have a

green check mark. The parameters that are different are listed below the COM

component: The Bitrate is different from its original value. By double clicking the

Bitrate entry, the parameter dialog opens at this parameter:

AIDA Stacker Operating Manual

 Page 41

Figure 26: Parameter with Value different from the reference value

In Figure 26 there is the Reference Bitrate shown in red color next to the parameter

value that is currently set, as the default bitrate is different from the snapshot value. By

pressing the Apply button, the reference value is assigned and the value turns green:

AIDA Stacker Operating Manual

 Page 42

Figure 27: After assigning reference value

The parameter window can now be closed again. When checking the Stack Manager

Window, the red marks have disappeared and the Status changed to No differences:

AIDA Stacker Operating Manual

 Page 43

Figure 28: All differences resolved

The modification is complete and the stack can be saved now.

In practical situations, there will probably more differences than in this example. It may

also occur, that values cannot be assigned, because a certain sequence is required to not

lock the changeability of other parameters. To get a hint on the required sequence order,

the parameter assignment order of the original stack can be checked by viewing it in the

offline editor.

4.5 Cyclic Events

AIDA Stacker provides a means to send events not only once, but to repeat them a

given number of times or to endless repeat them. Cyclic events are part of the AIDA

Stacker and are stored within the stack configuration file. Nevertheless, the AIDA

Stacker application is the only AIDA tool that handles cyclic events; they are stored in a

separate container in the stack configuration file and are ignored by other AIDA tools.

The cyclic event table table is stored as part of the Stack configuration when saving the

Stack and is evaluated when the Stack is restored from the configuration file by the

AIDA Stacker. Cyclic events with an infinite cycle count will automatically be activated

by the Stacker as soon as the Stack goes online, provided that their activation box is

checked. Events with a finite cycle count must be triggered manually through this table.

AIDA Stacker Operating Manual

 Page 44

The definition for those events is done in the main window (see Cyclic Events Panel).

To manage cyclic events, that have already been defined, the Cyclic Events Window is

provided, which can be accessed via Menu Stack – Cyclic Events… .

Figure 29: AIDA Stacker "Cyclic Events" window

Figure 30: AIDA Stacker main window’s control panel: the cyclic events -related controls

 Act: The toggle-button activates/deactivates a corresponding non-cyclic event

respectively retriggers/recalls the corresponding cyclic event.

 Del: The button deletes the corresponding event from the table.

 ID: The ID of the AIDA Stack event. For details see the related AIDA Stacks

API documentation for AIDA_tstEvent.

 Remark: The Stacker creates a template event for each cyclic event definition in

this table. The event ID is not stored with the stack configuration file, but the ID

is generated by the AIDA system when the template event is generated when

loading the configuration file.

../stack/Event.html#dwEventID

AIDA Stacker Operating Manual

 Page 45

 Level, table column Lvl: The stacklevel where the AIDA event comes from. See

also AIDA_tstEvent#bStackLevel.

 Cycle count, table column Count: The cycle count for a cyclic event (1 for a non-

cyclic event). When set to 0 the cyclic event never expires. When set to a value

other than 0 the value indicates the number of cycles to be done.

 Period [ms], table column Time [ms]: The cycle time (in ms) for a cyclic event.

 SrcID, table column SrcID: For CAN messages this contains the Msg ID. See

also AIDA_tstEvent#unEventData.stData.stSrcID.

 DstID, table column DstID: For CAN messages this is not used. See also

AIDA_tstEvent#unEventData.stData.stDstID.

 Data flags, table column DF: Optional hardware or protocol -specific

information. See also AIDA_tstEvent#unEventData.stData.

bDataFlags.

 Data: This field contains the event data as a byte sequence in hexadecimal

notation.

 To Cmd Line: Copies the contents of the selected cyclic event to the

corresponding controls within the main window. It is not possible to edit the

events directly, they may only be activated, deactivated, retriggered or deleted.

When an event needs to be changed, this has to be done by copying it to the

main window, changing it and assigning it as cyclic event again. If the original

cyclic event is not required any more, it has to be deactivated or deleted

manually.

 Retrigger all: Retriggers all cyclic events with Cycle count > 0 listed in the table.

 Recall all: Recalls all cyclic events with Cycle count > 0 listed in the table,

which have not been sent yet.

 Activate all: Activates all cyclic events with Cycle count = 0 (i.e. never expiring)

listed in the table.

 Deactivate all: Deactivates all cyclic events with Cycle count = 0 (i.e. never

expiring) listed in the table.

 OK: Closes the window (same as the close button ‘X’ in the window’s title bar).

../stack/Event.html#bStackLevel
../stack/Event.html#unEventData
../stack/Event.html#unEventData
../stack/Event.html#unEventData

AIDA Stacker Operating Manual

 Page 46

4.6 Replacement Handling

4.6.1 Replacement Mechanism

For AIDA stacks, sometimes the problem may occur, that the same kind of stack needs

different parameter settings when used on different computers. Consider a situation,

where a stack uses the COM component for the serial interface. When using this stack

on different Windows PCs, the number of the COM Port may be different on each

machine. This would mean, that there would be two different variants of the stack

configuration file would be required, resulting in extra effort to handle several variants

of almost identical stack configurations. This is where the replacement concept of the

AIDA Stack system comes in: It is possible, to assign parameter values from system

environment variables, instead of having these parameter values defined fix in the stack

configuration. For the COM port example, the COM component Port parameter is

assigned to an environment variable that is defined on each PC to its individual COM

port number. So the very same AIDA Stack configuration file can be used on each PC

and finds the correct communication ports automatically. This saves a lot of version and

variant handling.

4.6.2 Using Replacements

Figure 31: AIDA Stacker "Replacement table" window

The replacement table window can be accessed using the menu Stack – Define

Replacement Table… . This table defines which parameter values shall be replaced when

restoring the Stack. The new values are restored from the process environment variables

AIDA Stacker Operating Manual

 Page 47

given in this table. This table will be stored as part of the Stack configuration when

saving the Stack and will be evaluated when the Stack is restored from the configuration

file.

Important: Replacement of values at Stack restoration will only take place if the given

environment variable exists and the checkbox Restore Defaults (Settings window, Stack

control group) is unchecked.

The replacement table contains 5 columns:

 Table column Rep.: The replacement status at the time when the Stack has been

restored is indicated by a corresponding symbol: 1.) OK: Replacement done. 2.)

OK: Replacement active, but not required. 3.) Not OK: Replacement active, but

environment variable does not exist.

 Table column Environment variable: The name of the environment variable

containing the replacement value.

 Table column Stack level: The stack level of the parameter of which the value is

to be replaced.

 Table column Parameter name: The name of the parameter of which the value is

to be replaced.

The Replacement table window contains 3 buttons:

 Clear all: Deletes all existing replacement table entries.

 Apply: Applies any changes.

 Done: Closes the window (same as the close button ‘X’ in the window’s title

bar).

4.7 Offline Editor

The AIDA Stacker usually operates as a GUI frontend to the underlying AIDA system.

Actually, when a stack configuration file is loaded, the Stacker application just points to

the file’s path and tells the AIDA system to load this file. The interactive configuration

in the stack manager and the parameter windows is technically based on the application

receiving information about contained components and available parameters from the

AIDA system. The Stacker itself does not interpret the stack configuration defined in

the stack files itself.

Unfortunately, there may be situations, where the AIDA system refuses to load such a

given configuration. This may be due to missing hardware interfaces, that are not

present on the currently used PC, that were available on the PC where the stack was

AIDA Stacker Operating Manual

 Page 48

originally set up. Another situation is when a certain environment variable is not present

on the current PC; this may result in a default parameter being used, that is not

compatible with the other settings. When this happens, the AIDA system refuses to load

the stack configuration file; the AIDA Stacker will then report an error message when

attempting to load, and no actual configuration is loaded into the Stacker.

The problem with these situations is, that the stack configuration file needs to be edited,

but as the AIDA system refused to load, the stack configuration cannot be edited in the

Stacker.

As a solution, the AIDA Stacker provides an offline editor, that works independently of

the underlying AIDA system. To work with the offline editor, it is necessary to

understand the structure of configuration when AIDA is online: When components are

added or parameters are assigned values, that happens with life objects. As a result,

properties of the component may change while the configuration is active. The options

of one parameter like being changeable may change when another is set to a new value.

There even are parameters that depend on other parameters, by changing one parameter

value, other parameters may appear or disappear. This can occur over different

components. As a result, when a stack configuration is loaded, the state of the stack is

restored step by step, in the same order, as the component adding and parameter

assignment would happen when the same stack was newly created from start. It is not

just adding components in the order of their levels and assigning all parameters of one

component before continuing with the next component. Instead, there is a complex

sequence of assignments involved. The offline editor shows the component and

parameter operations in the same order, as they are executed during the restoration,

when the AIDA system loads the stack configuration file. The recover a non-functional

stack, the offline editor allows to change parameter values, remove single parameter

assignments or remove whole components. As components can only be removed from

the top of the stack, when a component that is not on top of the stack, all components

above will be removed too.

As the information which parameters are available is dynamically generated by the

AIDA system when assembling life components, the offline editor can only operate

those parameters that are contained in the stack configuration file. It does not support

adding new parameters.

In addition to the immediate assignment of parameter values, these values may also be

assigned by referring to a replacement variable, which is a reference to the environment

variable holding the actual value that shall be used for the parameter. When a stack was

created on a different machine and refuses to load on another, it is often helpful to

inspect the replacements used in this stack. The offline editor lists all replacements and

allows to change or delete those references.

When in the offline editor a component or a variable is deleted, it is not actually

removed, but only marked as deleted. In the list, it still appears, but it is displayed with

strike through text. As it is still in the list, it can be selected and undeleted again. The

typical workflow for offline editing involves changing parameters and removing

AIDA Stacker Operating Manual

 Page 49

components until the stack becomes operational again. There is a button that allows

checking if it is operational, by passing a temporary version of the reduced stack

configuration to the AIDA system and reporting if this stack will load. This way, the

user can approach the reason for the defective original step, by first removing most of

the components and then returning them step by step. When removing and returning a

single parameter changes the stack stub from valid to invalid, the reason for the non-

operational original stack configuration is found, and looking up the component

documentation will probably reveal the correct setting.

Figure 32: AIDA Stacker Offline Editor window

 Stack Comment

AIDA Stacker Operating Manual

 Page 50

The stack comment corresponds to the comment that can be edited with the

dialog Stack - Stack Comment. Maximum comment size is 255 characters.

 Chunks found:

The stack configuration files have a container structure, the containers are called

chunks. There are three types of chunks: INFO (hold the comment),

STACKCFG (holds the information on components and parameters) and

STACKERCFG (holds the information in cyclic events and the contents of the

Stacker user interface elements after loading the stack, e.g. contents of the send

data string). For all of these three chunks that have been found in the

configuration file, the size is reported.

 Components and parameters list:

This list shows all components and parameters in the order they are assigned.

Every line corresponds to either adding a component or assigning a value to a

parameter. The columns of the list are

1. The stack level that the operation affects.

2. The component name, if the line refers to loading a component. For

parameter operations the component name column is empty.

3. The parameter name, when the line refers to assigning a value to a

parameter. For component loading operations the columns is empty.

4. The assigned value (only parameter assignments)

5. The name of the replacement variable, if there is a replacement assigned. If

there is no replacement, or if this is a component loading operation, the entry

is empty.

There are different font styles used:

• Bold text is for component loading lines

• Non bold text is for parameter assignment

• Red text marks parameter values that are changed to values different than in

the original configuration file.

• Gray, strike out through text are deleted parameters

• Orange and strike through text is for components and values that are deleted

because an underlying component was removed.

 The Delete button marks the selected entry in the Components and Parameters

list as deleted. If the marked entry is already deleted, the button changes to

Undelete.

 The Edit Parameter field is only available when a parameter assignment is

selected, and this assignment is not marked as deleted. It shows the parameter

AIDA Stacker Operating Manual

 Page 51

name and type (one of Integer, DWORD, Real and String). The Value field show

the current value and can be edited to a new value. The new value must fit with

the parameter type.

 When the Value field is edited, the new value can be applied with the Apply

button.

 If the Value was set to another value than in the original configuration file, the

Original Value is shown with green color, and an Assign button appears. This

assign button sets back the parameter value to the original value.

 The Replacement Variables list shows all replacement definitions in the stack.

The columns of the list are:

1. The stack level that the replacement affects.

2. The parameter name that is to replaced.

3. The environment variable name that should be assigned.

4. The value of the environment variable, if it exists, otherwise marked as <not

set>.

 The entries are shown in red color, if the replacements were changed to different

values than in the original stack configuration file.

 When the replacement is assigned to an empty replacement variable name, it is

marked as deleted and shown gray and strike through.

 The environment variable name that should be assigned to the selected

parameter.

 The Apply button assigns changed replacement variable names.

 When the replacement variable was changed to another name than in the original

configuration file, the Original Setting is shown in green color and the Assign

button sets it to the original setting again.

 The Save button writes a version of the configuration file. If the file name was

not changed since first loading, a warning appears, that this operation will

override the original file. Make sure to keep a copy of the original file.

 The Save As… button allows saving the modified configuration with a new name.

 The Test Stack button generates a temporary stack configuration file with the

current modification and passes this to the AIDA system. It shows a message

whether the current configuration is valid or invalid.

AIDA Stacker Operating Manual

 Page 52

Figure 33: Test Stack Result

 The Cancel button closes the window and returns to the AIDA Stacker main

window.

AIDA Stacker CAN Communication via CanEasy IPC

 Page 53

5 CAN Communication via CanEasy IPC

By means of a special CAN component, which is located in the subfolder

CAN_CEV_IPC\, it is possible to use the hardware layer of CanEasy, a tool from

Schleißheimer GmbH, via Inter-Process-Communication to be connected to the relevant

bus, so that all CAN interfaces supported by CanEasy can be used from the AIDA

Stacker and other applications from the AIDA tool set.

If the Stacker is installed as part of a standard AIDA installation, the CAN component

can be selected using the AIDA System Settings Wizard. On the wizard page "Change

CAN component" select option "Use CanEasy CAN component with

CEV_HAL_IPC.dll".

If the Stacker is installed as part of a CanEasy/BSKD7 installation, other CAN

components cannot be used (and therefore are not part of the installation), i.e. the

CanEasy CAN component with CEV_HAL_IPC.dll is used by default.

The requirements to establish a CAN communication via CanEasy IPC are as follows

(for details see the CanEasy user manual):

1.) CanEasy (CanEasy.exe) must be running.

2.) The CanEasy hardware must be configured properly.

3.) The CanEasy simulation must be running.

4.) The CanEasy IPC-Interface-Plugin must be active and configured for the proper

channel.

If the Stacker is installed as part of a CanEasy/BSKD7 installation, at each Stacker

startup it is checked, if an instance of CanEasy.exe is running. In case that no

CanEasy.exe process can be found, a warning message is displayed, which informing

the user about the 4 requirements listed above.

AIDA Stacker CAN Communication via CanEasy IPC

 Page 54

Figure 34: AIDA Stacker "CanEasy.exe is not running" message box

Figure 35: AIDA Stacker "CanEasy.exe is running" message box

AIDA Stacker Configuration of Beyond Compare 3 to

compare *.aida-cfg files as text files

 Page 55

6 Configuration of Beyond Compare 3 to compare *.aida-cfg files

as text files

It is possible to configure Beyond Compare 3 to compare *.aida-cfg files as text.

Open Beyond Compare 3 and select the menu entry "Extras > File Formats".

Figure 36: Beyond Compare 3 "File Formats" dialog window, "General" tab

Within the "File Formats" dialog window create a new file format entry "aida-cfg

(DumpConfig)" and in the "General" tab specify the file name mask "*.aida-

cfg".

Figure 37: Beyond Compare 3 "File Formats" dialog window, "Conversion" tab, BSK AIDA settings

AIDA Stacker Configuration of Beyond Compare 3 to

compare *.aida-cfg files as text files

 Page 56

Figure 38: Beyond Compare 3 "File Formats" dialog window, "Conversion" tab, Conti AIDA settings

Within the "Conversion" tab select the entry "External program (ANSI file

names)" from the "Conversion" drop-down-list.

In the "Loading:" text field specify one of the following two commands:

BSK AIDA:

 cmd /c ("%AIDABIN%DumpConfigFile.exe" %s) >%t

(however, this will not work for files with round brackets within their path)

Continental AIDA (i.e. with AIDA Platform Manager):

Instead of %AIDABIN% users of Continental AIDA must insert the absolute path to

their newest SDK or RTE, e.g.

 cmd /c ("C:\TOOL\Common\AIDA2\platform\AIDA_7\RTE_7.00.003_00\bin\

DumpConfigFile.exe" %s) >%t

Check the "Disable editing" checkbox.

Select the entry "ANSI" from the "Encoding" drop-down-list.

AIDA Stacker Configuration of Beyond Compare 3 to

compare *.aida-cfg files as text files

 Page 57

Figure 39: Beyond Compare 3 "File Formats" dialog window, "Grammar" tab

Within the "Grammar" tab create a new "Grammar Object" "blank lines" using

the "New…" button, which will open the "Grammar Item" dialog window.

Figure 40: Beyond Compare 3 "Grammar Item" dialog window

Within the "Grammar Item" dialog window specify the new "Element name" "blank

lines".

Select the "Category" "Lines".

In the "Text matching" text field specify the following pattern: ^\s*$

Check the "Regular Expression" checkbox.

Uncheck the "This element is case sensitive" checkbox.

AIDA Stacker Configuration of Beyond Compare 3 to

compare *.aida-cfg files as text files

 Page 58

Figure 41: Beyond Compare 3 "File Formats" dialog window, "Misc" tab

Within the "Grammar" tab check the "Insert spaces instead of tabs" checkbox.

AIDA Stacker AIDA Driver-Stacks

 Page 59

7 AIDA Driver-Stacks

7.1 Basics

 Since 1983 the OSI reference model exists for interfaces, which is also called the layer

model. It was issued by the Open Systems Interconnection working group, which was

brought into being in 1977 by the International Standardisation Organisation (ISO) with

the goal of describing a standardizable structure of (tele-)communication paths. It is

remarkable, that in this case not as usual an existing standard was declared as the world

standard, but that instead a standard developed on a theoretical approach was provided

before the development of appropriate interfaces. Today this standard is (despite critics

in special points, in particular because of the strong orientation on telecommunications)

in its fundaments accepted to a large extent and, not least on pressure of influential

institutions and authorities, it is also actually implemented. Its substantial advantage for

an implementation outside the telecommunications sector consists in the designation

and definition of layers, whose translation to general interfaces is possible.

Application

Application Layer

Presentation Layer

Session Layer

Transport Layer

Network Layer

Data Link Layer

Physical Layer

System A

Physical Media

Application

Application Layer

Presentation Layer

Session Layer

Transport Layer

Network Layer

Data Link Layer

Physical Layer

System B

Peer Protocols

1

2

3

4

5

6

7

Level No.

Fig. OSI Layer Model

Figure 42: OSI Layer Model

 As much as the layer model is accepted and spread throughout the telecommunications

and computer-networking community, as little known however it seems to be in other

fields of industrial applications. Only so it is explainable that many industrial interfaces

are designed in such a way that they cannot be directly represented by the layer model.

AIDA Stacker AIDA Driver-Stacks

 Page 60

The usual design defects here lie in the gluing of layers and crossings in the layer

structure. When embedding old protocols into new protocols it even frequently comes

to nesting. All too often developers feel qualified to define a new interface, possibly

assessed optimal for their specific task and considered the actual problem as solved, if

telegrams can be exchanged between the devices involved. Unfortunately that is usually

not even half of the truth.

 Since the task of AIDA does not lie in the strict promotion of the layer model, but in the

realization of existing interfaces, which are possibly not conform to the layer model,

compromises must be accepted for the setting-up of an interface driver reaching up to

the application. In order the fundamental goal of being able to combine driver layers

with one another remains realizable (only in such a way the expenditures raised for their

developments can be reused profitably), inevitably layers, as far as they are inseparable

or exhibit crossovers, must be combined. Ultimately for the application from the

combination of driver components always a driver stack must be created, which

implements all necessary layers up to the application level.

7.2 The AIDA Interface Driver Concept

 The driver concept chosen for the AIDA System represents the consistent transfer of the

requirements formulated in advance with an as close as possible adherence to the OSI

layer model.

 In the ideal implementation of the OSI reference model the interface path from the

application to the electronic counterpart station was developed layer by layer. The

reality usually looks different, as most protocols omit layers (usually some are actually

not needed outside of the telecommunications area), or, as previously mentioned,

exhibit various oddities. The AIDA system here demands interface components, which,

one constructing on the other, result in a driver stack, which implements the interface

completely. For this the involved components must satisfy three fundamental demands:

• A public definition section of the components permits a general examination by the

system, to what extent interface components can be constructed one on the other.

• All components must support multi-threading.

• The configuration of the components is made top down by the application.

 The first demand prevents from incompatible components assembled to a stack in a way

that it could be discover only at runtime that the desired data path was not establish

able. For that purpose the public definition section fulfills a key-lock-function, so to

speak.

 With the second demand it is achieved that each component retains control of the

interface, even if two or more data paths are established over the same interface with

possibly different parameterization (for example a different word format or transmission

rate).

AIDA Stacker AIDA Driver-Stacks

 Page 61

 The third demand permits the parameterization of individual components by the

application without the necessity for a separate tool to intervene in the configuration,

which is usually normal with operating systems. This demand is reinforced by the

possibility of the reconfiguration of an interface in conformity with current data

transmission, which would not be possible in the case of an external parameterization.

 This will be illustrated by the following example (in POOL language, the Portable

Object Oriented programming Language of the AIDA Platform), where a driver stack

with BSK diagnosis protocol over a serial interface will be set up. For this purpose only

two components are needed, which are available within a PC environment in each case

as DLL. Since AIDA must be able to serve several interfaces at the same time, first a

handle is assigned, which from now on clearly identifies the interface to the selected

device, here for example a distance warning system (DWS).

var

 hDWS: tHandle;

...

 hDWS := AIDA_hCreateStack;

Create Stack

DWS

Physical

Interface

Application

Empty Stack

to Handle

„AWS“

Figure 43: CreateStack

 Afterwards the driver stack is set up, however - and that is important - beginning from

the topmost levels. Thus it is ensured that the connection of the interface to the

application remains intact at any time.

type

 tStackLevel = Byte;

AIDA Stacker AIDA Driver-Stacks

 Page 62

var

 xoBDIAG, xoCOM: tStackLevel;

...

 xoBDIAG := AIDA_bAddToStack (hDWS, "BDIAG.component");

 xoCOM := AIDA_bAddToStack (hDWS, "COM.component");

 Here the function AIDA_bAddToStack returns (with the set-up of the stack) either an

arbitrarily assigned stack level, which identifies from now on the protocol layer within

the stack, or otherwise an error value, if the addition of the component was not possible.

AddToStack

BSKD

COM

Stack Levels
Application

Physical Interface

Figure 44: AddToStack

 The following function calls will parameterize the components, which are addressed by

their stack levels:

var

 boReply: Boolean;

...

 boReply := AIDA_boSetStackParam (hDWS, xoCOM, "COM", 1);

 AIDA_vSetStackParam (hDWS, xoCOM, "Baud", 38400);

 AIDA_vSetStackParam (hDWS, xoCOM, "Format", "8E1");

 AIDA_vSetStackParam (hDWS, xoBDIAG, "Retry", 2);

 boReply := AIDA_boSetStackParam (hDWS, xoBDIAG, "FIFO", 14);

 In each case the parameterization function returns a value, which states whether the

parameterization was successful or not. In accordance with POOL guidelines the

function can be used as well as a procedure (without the inquiry of the return value), if

it is beyond question that the parameterization can take place (the subsequent three

AIDA Stacker AIDA Driver-Stacks

 Page 63

parameterizations will demonstrate this). The last one of the five instructions is

unsuccessful, since the parameter "FIFO" does not match the parameter set of the

BDIAG component but instead of the COM component. This parameterization error is

noted accordingly as the boReply value. You recognize how the use of the Stack level

variables clearly assigns the parameterization to the corresponding driver component.

For the keywords the parameterization always uses the String type. The values are

handed over in their natural form as String, Double/Real64, LongInt/Int32,

LongWord/DWord or even as pointer. In this context it is guaranteed by the NETClient

component that the parameterization is possible also beyond networks and different

operating and processor systems (details are described down below). Differently than in

the example given above, as the recommended working style the parameterization of a

driver component should take place immediately after binding to the stack, since

parameters are often already needed for configuration when the next component is

added to the stack.

 In order to be able to query individual parameters another function is needed:

{ AIDA_tstParam: Element of an AIDA-Parameter list (see aida.pli.pli) }

type

 AIDA_tpstParam = ^AIDA_tstParam;

 AIDA_tstParam = record

 phsParamName: tpHString; { Name of the Parameter or nil for

 termination of array }

 bB3,bB2,bB1: Byte;

 enParamType: AIDA_tenParamType;

 bB7,bB6,bB5: Byte;

 enParamAttrib: AIDA_tenParamAttrib;

 bParamFlags: Byte; { Parameter flags, see AIDA_nParam* }

 bB8,bB9: Byte; { Reserve (in Components as bCacheInfo) }

 bVisualization: Byte; { Deflt. display mode, see AIDA_nPrefer* }

 unParamVal: AIDA_tunParamVal;

 pstValListEntry: AIDA_tpstValListEntry;

 end;

var

 pstParam: AIDA_tpstParam;

...

 pstParam := AIDA_pstGetStackParam (hDWS, xoCOM, "Baud");

 pstParam := AIDA_pstGetStackParam (hDWS, xoBDIAG, "");

 The first call returns a pointer to the structure, which describes the queried parameter

and its adjusted value. The structure contains a pointer to the string with the keyword as

well as a type information of the parameter value and a pointer to the parameter value

itself. Within the driver component this structure is embedded in an open array, which

ends, if the pointer to the keyword String holds the value nil. Consequently the function

returns a pointer to the first element of the open array, if no search string was handed

over, and the value nil, if the keyword searched for is not an element of the list. In this

way a particular parameter or all parameters of a driver component can be determined.

 With the function AIDA_boRemoveFromStack the driver stack can be gradually

dissolved again:

AIDA Stacker AIDA Driver-Stacks

 Page 64

 boReply := AIDA_boRemoveFromStack (hDWS, xoCOM);

 Again the return value indicates whether the operation was successful or not. Exactly as

customary in other stacks, a driver component cannot be removed from the middle of

the driver chain, since otherwise afterwards incompatible components would reside one

on the other. For the sake of simplicity, in addition the entire driver stack can be easily

destroyed with a single function call:

 boReply := AIDA_boDeleteStack (hDWS);

 It is obvious that for this task only the handle is needed as parameter.

 The NETClient component represents a completely transparent driver component. It can

be inserted in either place of the driver stack (it shall not be discussed here, to what

extent this would be really reasonable and favorable). It permits the construction of a

driver stack beyond the boundaries of the local computer. Analogous to the preceding

example the corresponding POOL code will be something like:

 xoBDIAG := AIDA_bAddToStack (hDWS, "BDIAG.component");

 xoNETClient := AIDA_bAddToStack (hDWS, "NETClient.component");

 boReply := AIDA_boSetStackParam (hDWS, xoNETClient, "RemoteAddress",

"BSK-WST-030");

 Notice, how striking simple the set-up of a complete interface to an foreign computer is;

it is sufficient to insert the NETClient component and to establish the connection. In the

first place, the addition of the NETClient component is always successful, because as an

intermediate layer it is compatible to all driver components. Contrary to the first

example, this time however the NETClient component must be parameterized

immediately in any case, because no further driver stack component can be set-up

without this. Setting of the RemoteAddress is only successful, if the AIDA server

service is installed and was started on the remote computer. If the connection over the

NETClient component once is established, the further set-up (in the example the COM

component) of the driver stack takes place like before and with the same commands,

now however already on the remote computer.

 xoCOM := AIDA_boAddToStack (hDWS, "COM.component");

AIDA Stacker AIDA Driver-Stacks

 Page 65

NET Component

BSKD

COM

Stack Levels
Application

Physical

Interface

Stack Levels

NET

NET

Remote

Driver Stack

Figure 45: NET Component

 The following sequence copied from the preceding example

 boReply := AIDA_boSetStackParam (hDWS, xoCOM, "COM", 1);

 AIDA_vSetStackParam (hDWS, xoCOM, "Baud", 38400);

 AIDA_vSetStackParam (hDWS, xoCOM, "Format", "8E1");

 now, of course, parameterizes the COM interface on the remote computer! After the

connection is established, here the possibly different parameter formats are converted by

the NETClient components running on the both computers, if necessary. It is not

necessary for the users application to know this!

7.3 The Structure of AIDA Drivers

 Since an AIDA driver stack resides between the application and the physical interface

(resp. the driver provided by the operating system of the target platform), three different

kinds of driver components are needed:

• At the top of the stack exists the component, which provides the API for the

application. This topmost component is a fixed part of the AIDA system.

• At the bottom of the stack there is a pure interface driver. This component has the

task to abstract the different APIs of different OS-specific interface drivers and to

provide a standardized API. A basic set of interface drivers is provided with the

AIDA system (e.g. for the control of serial interfaces named "COM" and for the

control of CAN interfaces named "CAN").

AIDA Stacker AIDA Driver-Stacks

 Page 66

• Between these two kinds of driver components different transportation protocol

components can be bound (e.g. for BSK diagnosis).

 In order to be able to optimally use the features of the respective operating system and

to reach a high execution speed of the modules, all driver components are implemented

in ANSI C. On the Win32 platform these components are available in the form of

DLLs.

 Each component has two public info blocks, which define to what extent two

components can be bound together when a stack is about to be assembled. The info

block is fixed toward the application level of the stack (upward, "lock") in each case,

however, the info block to the next lower partner ("key") can vary depending on the

adjusted parameters of the driver component. Therefore an application should generally

proceed with the assembly of a stack in such a way that a component is parameterized

immediately after binding to the stack, before the next component is loaded.

 Furthermore each component provides a public parameters list for its configuration. By

means of the appropriate API functions all parameters supported by the respective

component as well as their ranges of values can be obtained, resp. the values of

individual parameters can be changed. A component residing nearer to the top of the

stack has the capability of filtering values. If a certain parameter of a component

residing lower in the stack it is mandatory for the own parameterization of a higher

component and therefore must not be changed by the application, this driver component

closer to the application can hide the concerned parameter of the lower component from

the application.

7.4 The API of the AIDA Interface Drivers

 In a Win32 environment the API functions process both ASCII and UNICODE

characters, if needed. However, the mixed use is neither intended nor supported, i.e. if

UNICODE has been defined, it is mandatory to hand over strings always as UNICODE

strings.

 In case of errors the error cause can generally be determined by the general Windows

function GetLastError(). Caution: If no error occurs, LastError is not preset, unless

explicitly described differently within the respective API documentations, and therefore

the function does not return a valid value.

 The nomenclature for data structures and functions is in analogy with the Windows

system. Thus type definitions or #defines are always written blocked.

 Beyond that, variables receive the prefixes u, s, b, w, dw, to i8, i16, i32 for union,

string, byte, word, double word as well as integer values from 8, 16 and/or 32 bits

width. For structures the prefix st is used. With arrays the additional prefix a is placed

in front, with pointers p.

AIDA Stacker AIDA Driver-Stacks

 Page 67

 For creation and parameterization of a Stack only a few function calls are needed (here

again the calls which were already presented above, now however in C-syntax):

 Handle AIDA_hCreateStack (void);

 Produces a new stack.

 Bool AIDA_boDeleteStack (Handle hStack);

 Deletes a stack. In addition all bound components are unloaded.

 AIDA_StackLevel AIDA_bAddToStack (Handle hStack, char *sName);

 Binds a new driver component to the bottom of the stack. The returned stack level is

needed in order to address a certain driver.

 Bool AIDA_boRemoveFromStack (Handle hStack, AIDA_StackLevel dwLevel);

 Removes a component, as well as all others underneath, from the stack.

 Bool AIDA_boSetStackParam (Handle hStack, AIDA_StackLevel dwLevel,

 char *sParamName, ...);

 Sets a Parameter. For portability reasons the function was designed as a function with a

variable number of parameters; however at present in the current version only exactly

one additional parameter is expected and evaluated.

 AIDA_Param* AIDA_pstGetStackParam (Handle hStack,

 AIDA_StackLevel dwLevel,

 char *sParamName);

 Determines a parameter (if sParamName != null) or the list of all Parameters

(sParamName == null).

AIDA Stacker Installation

 Page 68

8 Installation

All necessary files to run the program, as well as the stack components *.component for

the configuration and use of the communication stacks, are part of the AIDA installation

process respectively of the CanEasy/BSKD7 installation process.

Hint: Possibly additional hardware drivers (e.g. CAN driver from Vector GmbH) are

required.

AIDA Stacker Table of Figures

 Page 69

9 Table of Figures

Figure 1: Create New Stack ... 7
Figure 2: Stack Manager .. 7
Figure 3: Add Component .. 8
Figure 4: Choose Filter Component ... 9
Figure 5: Stack Manager .. 10
Figure 6: CAN Component Parameterization ... 10
Figure 7: Set Bitrate ... 11
Figure 8: Setting Parameter ChannelMask .. 12
Figure 9: AIDA Stacker main window – Expert Mode .. 13
Figure 10: AIDA Stacker main window – Basic Mode ... 13
Figure 11: AIDA Stacker main window: control panel .. 14
Figure 12: Level Mask Selector dialog ... 15
Figure 13: Event Mask Selector dialog .. 15
Figure 14: AIDA Stacker main window: Log panel/window .. 18
Figure 15: AIDA Stacker Settings window (Appearance and Stack) .. 21
Figure 16: AIDA Stacker Settings window (Logging) ... 22
Figure 17: Statistics window... 24
Figure 18: AIDA Stacker "Stack Comment" window .. 26
Figure 19: AIDA Stacker "ID filter" window .. 28
Figure 20: Add Component dialog window .. 33
Figure 21: Component Parameterization window (non-modal), here for CAN ... 34
Figure 22: Original Stack without changes .. 37
Figure 23: All components below removed .. 38
Figure 24: Returned the Packer Component ... 39
Figure 25: COM component reloaded .. 40
Figure 26: Parameter with Value different from the reference value .. 41
Figure 27: After assigning reference value .. 42
Figure 28: All differences resolved ... 43
Figure 29: AIDA Stacker "Cyclic Events" window .. 44
Figure 30: AIDA Stacker main window’s control panel: the cyclic events -related controls 44
Figure 31: AIDA Stacker "Replacement table" window .. 46
Figure 32: AIDA Stacker Offline Editor window .. 49
Figure 33: Test Stack Result .. 52
Figure 34: AIDA Stacker "CanEasy.exe is not running" message box... 54
Figure 35: AIDA Stacker "CanEasy.exe is running" message box... 54
Figure 36: Beyond Compare 3 "File Formats" dialog window, "General" tab.. 55
Figure 37: Beyond Compare 3 "File Formats" dialog window, "Conversion" tab, BSK AIDA settings 55
Figure 38: Beyond Compare 3 "File Formats" dialog window, "Conversion" tab, Conti AIDA settings 56
Figure 39: Beyond Compare 3 "File Formats" dialog window, "Grammar" tab ... 57
Figure 40: Beyond Compare 3 "Grammar Item" dialog window .. 57
Figure 41: Beyond Compare 3 "File Formats" dialog window, "Misc" tab ... 58
Figure 42: OSI Layer Model ... 59
Figure 43: CreateStack .. 61
Figure 44: AddToStack .. 62
Figure 45: NET Component ... 65

	1 Table of Contents
	2 Revision Index
	3 Introduction
	4 Operating Manual
	4.1 Basic Configuration
	4.1.1 Stack Components Configuration Example
	4.1.1.1 Adding Stack Components
	4.1.1.2 Configuration of Stack Components

	4.2 Stacker Main Window
	4.2.1 Control Panel
	4.2.2 Log Panel/Window

	4.3 Stacker Menus and related Windows
	4.3.1 Files
	4.3.1.1 Create New Stack
	4.3.1.2 Load Stack…
	4.3.1.3 Save Stack
	4.3.1.4 Save Stack as …
	4.3.1.5 Offline Edit Config File …
	4.3.1.6 Dump Config File …
	4.3.1.7 Settings
	4.3.1.8 Exit

	4.3.2 Stack
	4.3.2.1 Show Statistics
	4.3.2.2 Stack Manager
	4.3.2.3 Stack Comment
	4.3.2.4 Define Replacement Table…
	4.3.2.5 Cyclic Events…

	4.3.3 Logging
	4.3.3.1 Log File…
	4.3.3.2 ID Filter…
	4.3.3.3 Save Trace Buffer…

	4.3.4 Window
	4.3.5 Help menu "?"
	4.3.5.1 Info…
	4.3.5.2 AIDA System Settings …
	4.3.5.3 Help
	4.3.5.4 Component Info …

	4.4 Stack Manager
	4.4.1 Stack Manager Window
	4.4.2 Using the Stack Manager

	4.5 Cyclic Events
	4.6 Replacement Handling
	4.6.1 Replacement Mechanism
	4.6.2 Using Replacements

	4.7 Offline Editor

	5 CAN Communication via CanEasy IPC
	6 Configuration of Beyond Compare 3 to compare *.aida-cfg files as text files
	7 AIDA Driver-Stacks
	7.1 Basics
	7.2 The AIDA Interface Driver Concept
	7.3 The Structure of AIDA Drivers
	7.4 The API of the AIDA Interface Drivers

	8 Installation
	9 Table of Figures

