

Portable Object Oriented Language

Language Description and Reference

Revision: see Change Index

©

Büro für Datentechnik GmbH

35418 Buseck
Germany

POOL Contents

1 Contents

1 CONTENTS .. 2

2 CHANGE INDEX... 4

3 INTRODUCTION... 5

4 LANGUAGE DESCRIPTION OF POOL... 6
4.1 The Backus-Naur Notation... 6
4.2 The POOL Vocabulary... 7
4.3 Comments.. 8
4.4 Identifiers.. 8
4.5 Numbers... 9
4.6 Strings .. 10

4.6.1 Character Strings.. 10
4.6.2 Byte Strings .. 11

4.7 Type Definitions ... 12
4.8 Data Types... 12

4.8.1 Simple Types .. 12
4.8.2 Pointer Types.. 13
4.8.3 Structured Types .. 14

4.9 Constant Definitions... 17
4.10 Variable Declaration ... 18
4.11 Use of Variables, Fields and Constants ... 19
4.12 Expressions .. 20
4.13 Operators .. 21

4.13.1 Monadic Operators.. 22
4.13.2 Multiplying Operators .. 22
4.13.3 Adding Operators .. 23
4.13.4 Comparative Operators ... 24

4.14 Statements.. 24
4.14.1 Simple Statements .. 25
4.14.2 Assignments.. 25
4.14.3 Procedure Calls... 25
4.14.4 Function Calls.. 26
4.14.5 Type Transformations ... 27
4.14.6 Control Statements.. 29
4.14.7 Structured Statements... 29
4.14.8 Sequential Statements .. 29
4.14.9 Conditional Statements ... 29
4.14.10 Repetitive Statements... 31
4.14.11 with Statement .. 33

4.15 Procedure Declarations .. 34
4.16 Function Declarations ... 36
4.17 Method Declaration... 37

4.17.1 Method Calls ... 38
4.17.2 Constructors and Destructors ... 38

4.18 Program Modules.. 42

 Page 2

POOL Contents

4.18.1 Validity Scopes.. 43
4.18.2 Import of References from other Modules .. 43

5 COMPILER INSTRUCTIONS ... 45
5.1 Switches... 45
5.2 Parameters... 46
5.3 Conditional Compilation ... 47

5.3.1 Standard Symbols for Conditional Compilation.. 47

6 THE POOL SYSTEM MODULE ... 49

7 INTERNAL DATA REPRESENTATION... 50
7.1 Boolean .. 50
7.2 Char ... 50
7.3 Int8 ... 50
7.4 Byte .. 50
7.5 Int16 ... 50
7.6 Word... 50
7.7 Int32 ... 50
7.8 DWord .. 51
7.9 Real32.. 51
7.10 Real64... 51
7.11 Strings... 51
7.12 Arrays.. 51
7.13 Records... 52
7.14 Objects.. 52
7.15 Pointers... 52

8 FORMATTING AND NOMENCLATURE ... 53
8.1 Source Code Formatting.. 53

8.1.1 Headlines.. 53
8.1.2 Comments .. 53
8.1.3 Blank Lines ... 54
8.1.4 Indentation .. 54

8.2 Nomenclature... 58
8.2.1 Case Sensitivity .. 58
8.2.2 Prefixes... 59

9 LITERATURE ... 62

10 INDEX ... 63

 Page 3

POOL Change Index

2 Change Index

Date Author Rev. Ref. Type Description

2005-09-19 Uwe Kühn 1.02.00 various format

content

Formatting of special characters.

Updated examples.

2005-09-15 Uwe Kühn 1.01.00 all editorial

Translation to English language
based on “POOL 2 deutsch.doc”
as of 2003-07-03.

 Page 4

POOL Introduction

3 Introduction

 Conventional programming languages like Pascal, FORTRAN or C are designed so that
over the way of a compiler an independent machine code executable program is created
from the corresponding source instructions. The real compiler enters into no interaction
with the user. Smallest changes cause a new compilation of the program and the
testability of programs and modules is very restricted. Newer integrated programming
environments take this circumstance into account and hardly leave wishes unfulfilled
on programming and test by an event-driven and interactive user interface. These tools
nevertheless are still intended to produce an independent executable program. This
mode of operation, however, is rather unfavourable for the operation of a test bed or for
the direct interaction with an attached electronic device. Besides the demand to be able
to generate programs the urgent need insists here to be able to execute immediate
actions by direct command line instructions. Once, BASIC interpreters from the initial
years of microprocessor technology already went pretty much close to this claim
without delivering a really efficient or really object-oriented tool with BASIC, though.
This type of the line wise system control has got itself at the level of operating system
shells obstinately why so-called shell languages also are here talking. The basic syntax
of Shell languages is mostly

 Command <Parameter(s)> <Option(s)>

 in which the options represent a primitive opportunity to adjust environmental variables
for this command. Since avoiding of unnecessary keyboard typing in the interactive
mode always means a time-saver, such shell languages have all a more or less
mysterious appearance (see DOS, Unix, even BSK-Diagnosis), what lets the make - and
to an even higher extent the comprehension - from programs in such languages get easy
for a frustrating experience.

 On the other side conventional programming languages are unsuitably to interactive
work because they need a certain part of purely formal code and - what weighs more -
kind things, like leaving out parameters, the expansion of parameter lists or even the
submission of options are not possible. Nevertheless, there are also attempts to use
programming languages as shell languages.

 POOL has tried to achieve - obliged to it’s name - this two aforementioned basic
demands:

 As in the case of every compiler data structures, procedures, functions etc. are
translated and summarized to modules, there isn't, however, any main program. After
all required modules which were made in advance are loaded, all objects declared as
public are at the user's disposal and all his directives, still in POOL syntax, represent in
fact the main function of a POOL program.

 Page 5

POOL Language Description of POOL

4 Language Description of POOL

 POOL resembles all Pascal based languages. For a user who masters Pascal, it is
therefore very easy to use POOL. POOL also is to be easily learned for beginners, since
it does without partial features of Pascal. In opposition to Wirth's Pascal, however,
achievements of the Borland's Pascal compilers were taken up into the object-oriented
expansions. The possibilities of the parameter submission were also enhanced to
procedures and functions. As a concession to the line interactive use of pool the
definition of omitting parameters and the use of untyped lists were made possible. The
essential syntactic difference compared with Pascal is the use of special end keywords
at all structured instructions and the so caused introduction of new keywords such as
elseif. This expansion shall emphasize the program’s structure more strongly and in
addition saves many begins. Other essential differences compared with the common
Pascal variants are indicated in italics as help for Pascal experts in the respective
sections (e.g. BP = Borland Pascal).

 The pool source files (<name>.pool) are pure text files with usual line hyphen(s)
common to the used operating system. Since there is no line extension character and
'carriage return' (<cr>) is interpreted as white space, even DOS text files (containing
<cr><lf>) can be processed directly under UNIX. As the character set an extended 1
byte ASCII set is presupposed. The individual lines may be at most 200 characters long.
The different structure levels are marked by indentation, e.g. by two characters, where
obligatory house rules (see chapter 6) improve the maintainability of program sources.
Unless in comments and text constants merely <tab>s, <lf>s, <vt>s, <ff>s, <cr> and the
ASCII characters $ 20 to $ 7 E ('~') are permitted, where all control characters are
interpreted as delimiting characters. Comments and text constants apart from <nul>,
<cr> and <lf> may contain arbitrary signs, what possibly makes the program no longer
portable, however, and can't be processed with any arbitrary editor any more either. The
translated text constants may contain all characters from <nul> ($00) up to $FF, the few
not allowed characters have to be input as escape sequences (e.g. cChar := '\r';
csString := 'ABC\x0A';).

4.1 The Backus-Naur Notation

 Traditionally for the definition of a programming syntax the Backus-Naur notation
(BNF = Backus Naur Form) is used. The syntax of a language is described thus
completely. The representation of the language syntax into syntax graphs is, however, a
more open type, an equal one. Both notations serve to the direct realization of the
syntax Parser. The BNF uses symbolic representations which are in this form not part
of the described language.

 Syntactic elements are identifiers in English language, are written with lower-case
letters and included in the angle brackets < and >.

 ::= one would translate "may consist of" and serves the exact specification of the syntax
elements.

 Page 6

POOL Language Description of POOL

 Alternatives at the specification of the syntax elements are separated by the vertical line
|.

 In curly brackets { and } included sequences are optional and may be also used
repeatedly (don't apply to the description of the comments and compiler switches).

 <empty> points to the permissible particularly use of an empty element.

4.2 The POOL Vocabulary

 The complete basic vocabulary of POOL consists of a number of symbols which are
classified as follows:

 <letter> ::= A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y |

Z | a | b | c | d | e | f | g | h | i | j | k | l | m | n | o | p | q | r | s | t | u | v | w | x | y | z | _

 <digit> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

 <bin digit> ::= 0 | 1

 <oct digit> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7

 <hex digit> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | A | B | C | D | E | F | a | b | c | d | e | f

 <special symbol> ::= + | − | ∗ | / | ! | & | $ | | | @ | = | <> | != | < | > | <= | >= | (|) | [|] | { | } | (∗ |
∗) | := | . | .. | , | ; | : | ' | " | ^ | << | >> | <reserved word>

 <reserved word> ::= absolute | and | array | begin | Boolean | breakfor | breakrepeat |
breakwhile | Byte | ByteString | case | Char | CharString | const | constructor |
contfor | continue | contrepeat | contwhile | destructor | div | do | downto | DWord |
else | elseif | end | endcase | endfor | endif | endwhile | endwith | exit | external |
false | for | forward | from | function | goto | if | import | in | inherited | Int8 | Int16 |
Int32 | Int64 | label | loop | module | mod | nil | not | object | of | or | packed | Pointer |
private | procedure | program | public | Real32 | Real64 | QWord | record | repeat |
return | set | shl | shr | signed | static | String | then | to | true | type | UChar |
UCharString | unsigned | until | var | variant | virtual | WChar | while | WideString |
with | withopt | Word | WordString | xor

 <space> ::= < > | <tab> | <cr> | <lf> | <ff>

 Blank characters <space> is treated as a hyphen and is needed only where lack of
hyphens can lead to misunderstandable interpretation. Since an unusual notation affects
the readability and thus also considerably the maintainability of program sources the
above notation (all words in lower case letters except from the type identifiers) became
introduced obligatorily. Also the use of synonymous operators (e.g. not und !) should be
regulated uniformly, compiler switches could be introduced if necessary in order to
distinguish between respective conventions (e.g. not as logical, ! as arithmetical
operator).

 Page 7

POOL Language Description of POOL

4.3 Comments

 Comments can be inserted to any place between identifiers or special symbols. They are
embraced by { and } or (∗ and ∗) and may be nested as deep as necessary, resp. the are
led in by // and end automatically at the same line’s end. Although nesting in most of
the other languages is not usual, it was introduced intentionally in favour of practical
considerations.

 <comment> ::= <comment1> | <comment2> | <comment3>

 <comment1> := { <comment1 string> } |

 { <comment1 string> <comment> <comment1 string> }

 <comment2> ::= (∗ <comment2 string> ∗) |

 (∗ <comment2 string> <comment> <comment2 string> ∗)

 <comment1 string> ::= <any sequence of characters not starting with $ and

 not containing {, } and (∗>

 <comment2 string> ::= <any sequence of characters not containing {, (∗ and ∗)>

 <comment3> ::= // <comment3 string> <end of line>

 <comment3 string> ::= <any sequence of characters not containing <end of line>>

 Example:

(∗ This Comment includes (∗ this Comment ∗) ∗)

4.4 Identifiers

 Identifiers serve as references for types, variables, objects and functions. Within their
validity range (scope) identifier must be unambiguous, where the first 63 characters are
significant. Identifiers distinguish also between upper and lower case letters, mainly in
order to force a unique writing. The use of identical identifiers with different meaning
has to be avoided.

 There is no differentiation between lower and upper case letters in Pascal.

 <identifier> ::= <letter> { <letter> | <digit> }

 The above syntax applies to all identifiers in POOL and therefore isn't repeated at the
special identifiers appearing in the following, e.g. <type identifier> ::= <identifier>,
without being indicated explicitly in the corresponding section again.

 Page 8

POOL Language Description of POOL

 Examples (see Chapter 6):

csName, nenMonday, csABC, nenPik7, boDoorOpen

4.5 Numbers

 Decimal numbers are represented in the usual notation as an integer or broken number.
Integers are allowed in a hexadecimal, octal and binary representation additionally.

 <number> ::= <integer number> | <real number>

 <integer number> ::= <unsigned integer> | <sign><unsigned integer>

 <sign> ::= + | −

 <unsigned integer> ::= <digit> { <digit> } | <digit> { <hex digit> } <hex radix specifier> |
<oct digit> { <oct digit> } <octal radix specifier> | <bin digit> { bin digit> } <binary
radix specifier> | $ <hex digit> { <hex digit> } | 0x <hex digit> { <hex digit> }

 <hexadecimal radix specifier> ::= h | H

 <octal radix specifier> ::= o | O | q | Q

 <binary radix specifier> ::= b | B

 <real number> ::= <unsigned real> | <sign><unsigned real>

 <unsigned real> ::= <digit sequence>.<digit sequence> |

 <digit sequence>.<digit sequence><exponent prefix><scale factor> |

 <digit sequence><exponent prefix><scale factor>

 <digit sequence> ::= <digit> { <digit> }

 <exponent prefix> ::= e | E

 <scale factor> ::= <digit sequence> | <sign> <digit sequence>

 Remark:

 From the view of the compiler the sign is not part of the number, but treated separately
as a unary operator. Integers beginning with '0' will be, depending on the compiler
switch $COct, treated either as octal numbers or refused as illegal numbers. As an
expansion of the above syntax real numbers may also begin with the decimal point if a
numerical character follows next.

 Examples:

N = 123456789;
{$ifdef POOL} { POOL only, not BP }
 nABin = 01010101b;
 nAOct1 = 1234567o;
 nAOct2 = 1234567q;
 nAHex = 0ABCDEFh;
 {$COct+} { allow C syntax for octal numbers }
 nCOct = 01234567;

 Page 9

POOL Language Description of POOL

 {$COct-} { forbid C syntax for octal numbers }
 nCHex = 0xABCDEF;
{$endif}
 nPHex = $ABCDEF;
 nReal1 = 12e1;
 nReal2 = 12.;
 nReal3 = 1.2;
 nReal4 = 1.2e-1;

4.6 Strings

Strings are data types which have some length information and a data area. The length
information says how many elements the accompanying data area contains. In practice
Strings are from their length as well as not restricted and can take a size depending on
implementation which is nearby the address range of the target system. In an internal
representation strings are actually structured types, they are implemented, however, to
the advantage of the user like simple types. Due to their possible size strings are always
managed dynamically, i.e. their memory requirements are adapted at every operation to
the size required in the end. With their flexibility strings are one of the most important
benefits and one of the greatest strengths at all the language POOL offers.

Important notes for C programmers:

1. Strings are real independent types in pool and must be also used in this way.
CharString (synonymous with String) may be used only, where "readable"
characters are stored. For common buffers the type ByteString only (with prefix
"bs") has to be used.

2. Pool isn't C, therefore MemMove must never be used in a program for copying
strings. Firstly, the construct will get round all type checking with that,
secondly, it’s illegibly and thirdly also wrong, moreover because the string data
laid out dynamically cannot be copied. Furthermore MemMove isn't necessary,
since CharStrings are assignment compatible to zero-terminated Char-Arrays
(if $zstr+) as ByteStrings are to zero-terminated Byte Arrays. Special functions
exist for cases in which this cannot be made use of like AB2BStr, HStr2Str,
Move2Str and Str2HStr (see below).

3. The address references to the data contents of strings can change at every
operation since strings are managed dynamically in POOL. The use of the
address operator is therefore warned against urgently on string elements
(although permitted syntactically). For example: The pointer resolved by the
expression @csStr[3] will be usually pointing to an address outside the data
area of csStr after any manipulation of the String. Such an access usually isn't
necessary either.

4.6.1 Character Strings

Character strings (type name CharString, synonymous String) are sequences of
characters enclosed by quotes ' or double quotes ". If the characters ' and " should be

 Page 10

POOL Language Description of POOL

part of the strings themselves, they have to be headed by a \ (Backslash). Special signs
are represented with escape Characters like usual in C. Constant Character strings with
only one character are represented internally as Char constants which has no meaning,
however, for the user, since single characters are in principle assignment compatible to
strings.

 <char string> ::= ' { <character1> } ' | " { <character2> } "

 <character1> ::= <character except CR, LF, ' and \> | <escape character>

 <character2> ::= <character except CR, LF, " and \> | <escape character>

 <escape character> ::= \ <escape code>

 <escape code> ::= <character escape code> | <octal escape code> | <hex escape code>

 <character escape code> ::= a | b | f | n | r | t | v | \ | ' | "

 <octal escape code> ::= <oct digit> | <oct digit> <oct digit> | <oct digit> <oct digit> <oct digit>

 <hex escape code> ::= x <hex digit> { <hex digit> }

 Character Escape Codes:

 a alert (z.B. bell) t horizontal tab
 b backspace v vertical tab
 f form feed \ backslash
 n newline ' single quote
 r carriage return " double quote

 Examples:

'String, containing the " char'
"String, containing the ' char"
'String with '' and "', "\0", "\x00AB" { that’s only one char! }
"\0111" { these are two chars! }
"\090" { these are three chars! }
"\n" { this is one char, but will be possibly expanded to two chars
 when written into a text file }

4.6.2 Byte Strings

Byte Strings (type name ByteString) represent a generalised form of strings, where their
elements are not of the Character type, but of the Byte type. As they belong by
definition to the simple types, this kind of strings are often liked to be used as dynamic
buffers with an implicit length information und can therefore be used very simple as
submitting parameters as well as function results. Most string operations are in
principle also possible with byte strings so that manipulating these buffers appears to be
extremely comfortable. Character strings and byte strings are identical on data base and
can be led into each other by a simple type casting. The strict type checking of POOL,
however, requires two different types.

 Page 11

POOL Language Description of POOL

Unlike character strings there is no possibility to set up Byte strings as constants,
neither typed, nor untyped. On the other hand, however, the keyword bcstr can be
applied, that permits to create functions and procedures which work similarly with
Character or Byte strings without further distinction

4.7 Type Definitions

 Type definitions allow the creation of new data types based on the existing set of
standard types. Type definitions are defined in an independent definition block which is
headed with the keyword type.

 <type block> ::= type <type definition> { <type definition> }

 <type definition> ::= <type identifier> = <type> ;

 Examples:

type
 tbIndex = Byte;
 tbCounter = tbIndex;

4.8 Data Types

 Data types in the real meaning are data structure descriptions which are assigned to
variables. The variables themselves then form the instances of these data structures.

 <type> ::= <simple type> | <pointer type> | <structured type>

4.8.1 Simple Types

 Simple Types generally are unstructured data types.

 <simple type> ::= <standard type> | <type identifier>

 <standard type> ::= <ordinal type> | <real type> | <string type>

 <ordinal type> ::= <integer type> | <subrange type> | <enum type> | Boolean | Char

 <integer type> ::= Int8 | Byte | Int16 | Word | Int32 | DWord

 <real type> ::= Real32 | Real64

 <enum type> ::= (<identifier> { , <identifier> })

 <subrange type> ::= <constant> .. <constant>

 <string type> ::= String | ByteString

 Page 12

POOL Language Description of POOL

 Value ranges of Integer types:

 Type Range Format
 Int8 -128 .. 127 8 Bit signed
 Int16 -32768 .. 32767 16 Bit signed
 Int32 -2147483648 .. 2147483647 32 Bit signed
 Byte 0 .. 255 8 Bit unsigned
 Word 0 .. 65535 16 Bit unsigned
 DWord 0 .. 4294967295 32 Bit unsigned

 Range and precision of the Real types:

 Type Range Accuracy Format
 Real32 1.2∗10-38 (1.5∗10-45) to 3.4∗1038 6-7 digits 32 Bit IEEE
 Real64 2.2∗10-308 (5.0∗10-324) to 1.7∗10308 15-16 digits 64 Bit IEEE

 (the value in brackets isn't normalised any more)

 The standard types represent the basic data types for the construction of structured
types and aren't re-definable. The string types in principle are structured, however,
unstructured in their manifestation, thus being counted formally to the Simple types.
The type classes <integer type> and <real type> define assignment compatible data types
which are transferable into each other as long as the destination type can hold the
content of the source type.

 Examples:

Int16, (red, green, blue), 10..20, Char, Real64

4.8.2 Pointer Types

 Pointer types describe variables which contain address references to other variables
instead of data. Address references can be won both from static and dynamic (i.e.
runtime created) variables. A pointer which keeps the value nil doesn't provide any
reference to a variable.

 <pointer type> ::= ^<type identifier> | Pointer

 Untyped pointers of the pure type pointer can point to variables of any arbitrary type,
they are assignment compatible to all other pointer types, but can't get de-referenced
without a previous type cast, however.

 Page 13

POOL Language Description of POOL

 Example:

tpstCicle = ^tstCircle;

4.8.3 Structured Types

 Structured data types are indexed or not indexed orders of simple types.

 <structured type> ::= <array type> | <record type> | <object type>

4.8.3.1 Indexed Types (Array Type)

 Array types describe a finite number of identical components of another type.

 <array type> ::= array [<index type> { , <index type> }] of <type>

 <index type> ::= <ordinal type>

 The individual components of Arrays are provided with references by the index. If the
component type of an Arrays is also an Array, one can treat the result either as an Array
of Array or as a single multidimensional Array. The individual elements of strings (e.g.
Char) also are treated like an Array with index, but since no normal Array access takes
place internally, however, the string index must be indicated one by one (Str[n] equals
to Str.PText^[n]).

 "Open" Arrays are also supported by being copied from "indecent" big Arrays. To be
able to use such Arrays, the constant nMaxOASize exists in the POOL system, but
dependent on the target system, on which such Arrays are based in units of bytes as the
maximum size. Independent from that, in reality such "open" Arrays are dynamic data,
of course, whose actual size has to be determined by HeapBlockSize while the number
of allocated elements can be calculated for them over the size of every element. Merely
in some special cases such Arrays appear also static, e.g. in type definitions as constants
which the compiler allocates already. All functions which work with such data must
know and take into account an end criterion as a consequence! The POOL compiler
supports the use of "open" Arrays by a short notation at the index range specification
(see examples).

 Examples:

tacCA10 = array [0..9] of Char;
taaar64RA = array [Boolean] of array ['A'..'Z'] of array [0..9] of Real64;
 { the compiler is interpreting just the same as
 array [Boolean, 'A'..'Z', 0..9] of Real64}

{ "open" Array with most possible size in an actual implementation: }

 Page 14

POOL Language Description of POOL

tacOAC = array [0..nMaxOASize div SizeOf(Char)-1] of Char;

{ the same "open" Array in an open short notation: }
tacOAC = array [0..] of Char;

4.8.3.2 Record Types

 A Record type describes a structure which consists of a finite number - of as a rule
different - components. Each of these components, called field, gets an identifier of it’s
own and a type of it’s own.

 <record type> ::= record <field list> end | record <parent> <field list> end

 <field list> ::= <fixed part> | <fixed part> ; <variant part>

 <parent> ::= (<record type identifier>)

 <fixed part> ::= <identifier list> : <type> { ; <identifier list> : <type> } | <empty>

 <identifier list> ::= <field identifier> { , <field identifier> }

 <variant part> ::= variant <variant> { ; <variant> }

 <variant> ::= (<record section> { ; <record section> })

 For public, global Records the view of other modules to the fields of records can be
limited by the keywords private and public (these keywords work as switches, i.e. all
field identifiers from private to public or until the end aren't visible for other modules.

 Similar to object types Records can be derived from existing Record types at POOL
(see below).

 Variant parts of Records (unions in C) are introduced by the keyword variant and
describe data structures which come to lay over the same memory area. Records in
POOL are guaranteed to be always "packed", so that these parallel structures will never
happen to lay over alignment caused gaps. Therefore variants are used in practice often
as multi-structured buffers instead of genuine type casts. Since the defined variants not
necessarily must have the same physical total size (this can already depend on the
implementation alone), variant parts never can lie between non-variant parts of the
Record definition but only to their end. Due to their special treatment in POOL
dynamic strings are not permitted in variant parts of Records, neither directly nor
indirectly.

 Example (much further practice near examples in POOL.PLI):

stData1 = record (stData0)
 variant
 (i32L: Int32);
 (dwDW: DWord);
 (abB: array [0..3] of Byte);
 end;

 Page 15

POOL Language Description of POOL

 In Pascal there isn't any heredity at Records as well as no public or private. In contrast
and in advantage to Pascal in POOL variants are not named and are not described in
form of the there not even obvious Case construct either.

4.8.3.3 Object Types (Classes)

 Objects are structured types similar to Records which, however, still define so-called
methods besides data fields which carry out certain operations with the object. Such
methods are quite normal procedures and functions which are part, however, of the
object and are bound partly dynamically (virtual). Object types can be declared as global
and as type identifiers only (therefore not var Obj: object ... end;).

 <object type> ::= object <element list> end | object <parent> <element list> end

 <parent> ::= (<object type identifier>)

 <element list> ::= <field list> | <method list> | <field list> ; <method list>

 <field list> ::= <identifier list> : <type> { ; <identifier list> : <type> } | <empty>

 <identifier list> ::= <field identifier> { , <field identifier> }

 <method list> ::= <method declaration>{; <method declaration>}

 <method declaration> ::= <method prototype> | <method prototype> ; virtual | <method
prototype> ; external <integer constant>

 <method prototype> ::= <procedure declaration> | <function declaration> | <constructor
declaration> | <destructor declaration>

 At public objects, i.e. objects declared within the public segment, the view from other
modules at the fields and methods of these objects can be restricted by use of the
keywords private and public (these keywords work as switches, i.e. all identifiers from
private to public or until end aren't visible for other modules).

 Restrictive to the definition above constructors must not be virtual since the virtual
method table (VMT) isn't initialized at its call yet. Since a just defined object type
already may appear as a parameter in its methods and the compiler also must know it’s
size, all data fields, as indicated above, must be declared before the method’s
declaration. Objects can pass their data structures as well as their methods. The heir
declares from which object he is deduced. Unlike the data fields methods can be
declared with identical names as those of the ancestors, through what the corresponding
method is overwritten. At virtual methods exactly the same prototype must be used,
though, static methods can be redefined (however, they have to remain static). Except at
the overwriting of methods all visible names must be clear and therefore being not
allowed to be used as a parameter or local variable in methods either. Merely private
names of objects of other modules can be reused freely.

 Page 16

POOL Language Description of POOL

 In BP therefore the mixture of data fields and methods via private and PUBLIC is
possible which has the consequence, though, that some faults are recognized and
reported only at the implementation of the methods outside the object’s type
declaration. In addition, external is possible only at the implementation, there is the
additional number at virtual instead of at external and static methods may be overwritten
with virtual methods.

 Examples:

toPoint = object
 i16X,i16Y: Int16;
 procedure vDraw; virtual;
 end;

toCircle = object (toPoint)
 i16Radius: Int16;
 constructor poInit (XX,YY,R: Int16);
 destructor vDone; virtual;
 procedure vDraw; virtual;
 end;

4.9 Constant Definitions

 Constants permit the use of unchanging values by the use of their identifiers. In POOL,
constants allocate just the same as variables, their use, however, is of advantage since
expressions with constants are already evaluated by the compiler. Since there, however,
aren't any special constant data types, constants are submitted, e.g. at parameter lists
(variable number of parameters), like variables. To prevent from runtime errors at write
accesses on the constant segment, a function which classifies a submitted address is
provided (Code, Var, Static, Const, Stack, Heap, nil or invalid) which allows the user to
take own measures if it comes to handle illegal types. Constant definitions are carried
out in an independent block which is headed with the keyword const.

 <const block> ::= const <constant definition> { ; <constant definition> } ;

 <constant definition> ::= <constant identifier> = <constant> |
<constant identifier> : <type> = <typed constant>

 <constant> ::= <number> | <char> | <char string> | nil

 <typed constant> ::= <constant> | <array constant> | <record or object constant>

 <array constant> ::= (<typed constant> { , <typed constant> })

 <record or object constant> ::= (<empty>) | (<field identifier> : <typed constant> { ;
<field identifier> : <typed constant> })

 Definitions which contain a type information specify so-called typed constants. If not
all elements or fields are indicated, the rest of the occupied memory area becomes byte
wise filled with the value zero. 'array[..] of Char'-Types can be initialized by Character
Strings alternatively. For a use as a C string it has to be taken into account, that the

 Page 17

POOL Language Description of POOL

string is filled up with zeros only if the string length is smaller than the array size.
Therefore it is recommended to add a terminating zero character explicitly if necessary.
Only one variant can always be initialized at variant Records. For untyped constants
the smallest type which can take the given constant is created (in bytes).

 Examples:

const
 nrFakt = 1.234;
 ncsTextConst1 = 'Text' + '1';
 ncCharConst1 = 'C';
 ncsTextConst2 = ncsTextConst1 + ncCharConst1;
 ncsTextConst3 = ncsTextConst1 + ncsTextConst2;
 ncsTextConst4 = ncCharConst1 + ncCharConst1;
 ncsTextConst5 = '\1\2\3\4\5\6\7\10\100\200\377\a\b\f\n\r\t\v''\"\?\0\0';
 npTestNil = nil;
 nboTestRelOp = (1>2);
 nTestExprI = 3 ∗ (1+2);
 nTestExprR = 1/3;
 nTestUMinus = −10;
 nTestUPlus = +10;
 nTestANot = not 10;
 nboTestLNot = not false;

type
 tstPunkt = record
 x,y: Int16;
 end;
 tstP1 = record (tstPunkt)
 r: Int16;
 stRec: record
 variant
 (i,j,k: Int16);
 (b0: Byte; b1: Byte; b2: Byte; b3: Byte);
 (abB: array[0..3] of Byte);
 (acC: array[0..3] of Char);
 end;
 end;

const
 ndwLongConstant: DWord = 5;
 nstP1_1: tstP1 = (x:0; y:0; r:0; stRec:(i:0; j:0; k:0));
 nstP1_2: tstP1 = (x:0; y:0; r:0; stRec:(b0:0; b1:0; b2:0; b3:0));
 nstP1_3: tstP1 = (x:0; y:0; r:0; stRec:(abB:(0,1,2,3)));
 nstP1_4: tstP1 = (x:0; y:0; r:0; stRec:(abB:(0,1)));
 nstP1_5: tstP1 = (x:0; y:0; r:0; stRec:());
 nstP1_6: tstP1 = (x:0; y:0; r:0);
 nstP1_7: tstP1 = (x:0; y:0; r:0; stRec:(acC:('a','b','c','\0')));
 nstP1_8: tstP1 = (x:0; y:0; r:0; stRec:(acC: 'abc\0'));

4.10 Variable Declaration

 Variables are declared by assigning an individual data type to every variable identifier.
If the identical type shall be assigned to several identifiers, simplifying a list of
identifiers can be given. Variable declarations are carried out in independent blocks,
these are initialized with the keywords var or static.

 Page 18

POOL Language Description of POOL

 <var block> ::= <variable storage class> <variable declaration> { ; <variable declaration> } ;

 <variable storage class> ::= var | static

 <variable declaration> ::= <var identifier> { , <var identifier> } : <type> |
<var identifier> : <type> = <constant>

 Variables to which a constant was assigned at the declaration are said initialized or
static variables. The syntax is identical to that one with which typed constants are
initialized. Unlike constants, however, initialized variables can be changed again while
runtime. Such static variables are different from var variables by the fact that they are
available only once, even then, when they were created as a variable with a local
validity range (scope) (e.g. in procedures) and have the possibility of keeping their
value from one call to the next one.

 The type checking of POOL is strict, i.e. var variables must not and static variables must
be initialized.

 A variable or typed constant of an object type is described as the instance of the object.
Only initialized object instances can be used without constructor calls (even
assignments like Obj2 := Obj1 can never replace the constructor call for not initialised
object instances!).

 Examples:

var
 i,j,k: Int16;
 pi16Ptr: ^Int16 = nil;
static
 boListOutput: Boolean = false;

4.11 Use of Variables, Fields and Constants

 Variables and constants are used as complete variable, component of a variable or as
pointer referenced variables by their given identifier.

 <variable> ::= <variable identifier> { <qualifier> } | <typecast> { <qualifier> } |

 <function designator> { <qualifier> }

 <variable identifier> ::= <identifier> | <module identifier> . <identifier> |

 . <module identifier> . <identifier>

 <typecast> ::= <type identifier> (<variable>)

 <function designator> ::= <function identifier> |

 <function identifier> (<actual parameter> { , <actual parameter> })

 <qualifier> ::= <index> | <field designator> | ^

 Page 19

POOL Language Description of POOL

 <index> ::= [<expression> { , <expression> }]

 <field designator> ::= . <field identifier>

 The dot preceding the module name serves to indicate the following identifier as an
unequivocal module name and is usually only necessary in the (hopefully) rare cases
where a (local) record variable exists with the same name. However, in principle, to
distinguish global variables of other modules from record elements clearly, it can make
sense to use the leading point at module names. Typecasts with different integer types
are partly changed by the compiler into transfer functions; the result, of course, is not
longer a variable and therefore no qualifier can follow either (e.g. Int16(WordVar) is a
variable, while Int16(ByteVar) is the result of a transfer function). In principle, a real type
casting is possible only if the size of the variables corresponds to the size of the type
which the type identifier exactly stands for. Function results can not be used as
variables, however, if a function returns a pointer this can be de-referenced by a
succeeding ^ and this stands for the variable at which the pointer points. See section
'function calls' for the general definition of <function designator>.

 Examples:

i, .MODULE1.i
Int16(wVar), toRec2(stRec1Var).i16X
astA[2], adwB[2∗3+1,5], csStr[Length(csStr) −1]
oCircle.i16Radius, stData.bHi, stData.stR.pA2
pstDataPtr^.bLo, pst := pstPrtFunc(i16A,i16B,i16C)

4.12 Expressions

 Expressions are links of operands by operators. Operands are variables, constants or
functions. Operators contain certain processing regulations for the assigned operands.
The result of an expression is always a value of a valid and existing data type.
Operators obey a predefined hierarchy. Not all combinations of operands and operators
make sense and all combinations therefore are not allowed either.

 Remark:

 Common to all high level languages the parts of composite arithmetical terms are
calculated independently from the order of their appearance in the source text!
Therefore it is not permitted to formulate expressions, where the terms are dependent of
their order, e.g. several function calls with side effects. Also mathematically
unnecessary brackets or type casts do not influence the order of the computing. If a
certain calculation order has to be kept, the expressions has to be split.

<expression> ::= <simple expression> |

 <simple expression> <relational operator> <simple expression>

<relational operator> := < | > | <= | >= | = | <> | !=

 Page 20

POOL Language Description of POOL

<simple expression> ::= <term> | <simple expression> <adding operator> <term>

<adding operator> :== + | − | or | | | xor

<term> ::= <factor> | <term> <multiplying operator> <factor>

<multiplying operator> ::= ∗ | / | div | mod | and | & | shl | << | shr | >>

<factor> ::= <variable> | <unsigned constant> | (<expression>) | <not> <factor> |
<sign> <factor> | @ <variable> | <function designator> | <typecast>

<unsigned constant> ::= <unsigned number> | <char string> | <char> | <constant identifier> | nil

<not> ::= not | !

 Examples:

(a+b∗c), pi>0, 3∗(−5), a+1 > b, @stRec, Sin(x/2)

4.13 Operators

 The operators are arranged hierarchically into four levels. They are graded descending
into monadic (unary) operators, multiplying operators, operators adding up as well as
comparative operators. Operators of a higher level "adhere" to the adjacent operands
more tightly and are executed preferentially. The operators are usually evaluated in the
expression within the hierarchy levels from left to right, but the compiler may carry out
rearrangements for the optimization of the computing path, except for logical or and
and. The logical operators or and and are evaluated strictly from left to right and also in
the short circuit procedure. By brackets (and) hierarchy levels can be preferred,
however, without forcing a certain evaluation order. (e.g. a+(b+c) can be evaluated the
same way as a+b+c). Operators only have an effect on operands of cooperating types,
normally. Only some operators have an effect on operands of different types or connect
even operands of different types. The operators are subdivided into logical operators
who only have an effect on Boolean operands and arithmetical operators who have an
effect on all numerical operands. Within the arithmetical operators there are some who
only have an effect on integral operands. As an extension the addition operator + can be
applied also to strings and characters (Char).

 The arithmetical operators, except /, shl, <<, shr and >>, cause at application to different
integer types a type extension according to the table below. According to these rules the
compiler investigates the result type and whether an expression is permitted. The result
type again is used to check the permission of assignments. Particularly at terms with
more than two operands the calculations are executed also with higher precision if
necessary. The type of the destination variables at assignments influences the
evaluation of terms under no conditions. Besides the standard types (I8=Int8, BY=Byte,
I16=Int16, WD=Word, I32=Int32, DW=DWord) the compiler also uses the intermediate
types 7Bit (0..$7F), 15Bit ($0100..$7FFF) and 31Bit ($00010000..$7FFFFFFF),
particularly for being able to assign constants of the appropriate range both to signed
and unsigned variables. Due to the strict type checking of POOL otherwise either

 Page 21

POOL Language Description of POOL

ByteVar := 0 or Int8Var := 0 would be rejected, depending of the constant 0 to be
interpreted internally as Int8 or as Byte.

 7Bit I8 BY 15Bit I16 WD 31Bit I32 DW

7Bit 7Bit I8 BY 15Bit I16 WD 31Bit I32 DW

I8 I8 I8 I16 I16 I16 I32 I32 I32 Err

BY BY I16 BY 15Bit I16 WD 31Bit I32 DW

15Bit 15Bit I16 15Bit 15Bit I16 WD 31Bit I32 DW

I16 I16 I16 I16 I16 I16 I32 I32 I32 Err

WD WD I32 WD WD I32 WD 31Bit I32 DW

31Bit 31Bit I32 31Bit 31Bit I32 31Bit 31Bit I32 DW

I32 I32 I32 I32 I32 I32 I32 I32 I32 Err

DW DW Err DW DW Err DW DW Err DW

4.13.1 Monadic Operators

 Monadic operators most strongly adhere to operands and are considered an inseparable
unit with the operand. They only have an effect on the one following operand. One also
can understand the monadic operators as a short notation for functions omitting the
brackets, what at the addressing operator @ gets particularly clear. The two negation
operators not and ! are synonymous and cause an inversion at Boolean operands, resp.
the execution of the 1’s complement at integral operands.

 <monadic operator> ::= not | ! | @ | <sign>

 Examples:

not true, @Data, !10110110b

4.13.2 Multiplying Operators

 These operators are not really multiplying in the severe sense, or rather operate at the
hierarchy level of the multiplying calculations and therefore are described so. They
always stand between the operands which they connect.

<multiplying operator> ::= ∗ | / | div | mod | and | & | shl | << | shr | >>

 Page 22

POOL Language Description of POOL

 The operator couples and | &, shl | << and shr | << are synonymous. Mode of action of
the operators, cooperating operand types and result types of the operators shows the
table below. Other combinations are not permitted. In this context it is advantageous to
use the type classes for the operands that have been introduced before.

 Operand type A Operator Operand type B Result type

 <integer type> ∗ <integer type> <integer type>

 <real type> ∗ <integer type> |
<real type>

Real64

 <integer type> |
<real type>

∗ <real type> Real64

 <integer type> |
<real type>

/ <integer type> |
<real type>

Real64

 <integer type> div | mod | and |
& | shl | << | shr |

>>

<integer type> <integer type>

 Boolean and | & Boolean Boolean

 Examples:

3∗8, 122 div 6, 10h shl 5, b & 00001100b

4.13.3 Adding Operators

 The operators adding up are used like the multiplying operators, they work, however, at
the hierarchy level of the dash type calculations and therefore get called that way.

 <adding operator> ::= + | − | or | | | xor

 The operators or and | are synonymous. Mode of operation, cooperating operand types
and result types of the operators are shown in the table below.

 Page 23

POOL Language Description of POOL

 Operand type A Operator Operand type B Result type

 <integer type> + | − | or | | | xor <integer type> <integer type>

 <real type> + | − <integer type> |
<real type>

Real64

 <integer type> |
<real type>

+ | − <real type> Real64

 Boolean or | | | xor Boolean Boolean

 String | Char + String | Char String

 Examples:

a+3, 55 xor 0FFh, c or d

4.13.4 Comparative Operators

 The comparative operators take a special position both regarding their hierarchy level
(undermost) and their result type which always is of the type boolean. Furthermore
comparative operators exclusively connect operands of equal type or at least equal type
classes (so that not apples get comparable with pears). Character strings are compared
in accordance with their character code in which the leftmost characters take the most
significant positions. A string is also regarded as greater if it is longer than the other
one and is in addition identical with it up to the length of the shorter.

<relational operator> := < | > | <= | >= | = | <> | !=

 The Operators <> and != are synonymous. Comparisons basically are allowed only
between simple, unstructured, compatible types. Supplementary the following
combinations are legal: <char string> | <char> with <char string> | <char> and <real type>
with <integer type>. For pointers only = and <> (resp. !=) are allowed and this only then,
if the pointers point at the same type or one at least is an untyped pointer (nil or of the
type pointer).

 Examples:

a > b, (f < 1) <> true, csStr = 'N', pstPtr <> nil

4.14 Statements

 Statements are the algorithmic execution steps of a program.

 Page 24

POOL Language Description of POOL

 <statement> ::= <simple statement> | <structured statement>

4.14.1 Simple Statements

 Such are simple statements which do not contain any further statements. The empty
statement which causes no action is also part of them.

 <simple statement> ::= <assignment statement> | <procedure statement> | <control statement>

4.14.2 Assignments

 Assignments allow to transfer new data contents into variables. Assignments are
allowed only between assignment compatible data types. Data types are assignment
compatible if they belong at least to the same type class, or if one is a real and the other
one an integer type and the destination variable is big enough that it can take the
assigned data contents or else if the assignment destination is a subset of the assignment
expression. E.g. for objects oFather := oSon is allowed, but oSon := oFather is not, since
not all fields of oSon get a value assigned. Only within functions or constructors the
function name can occur as a destination of an assignment like a variable through which
the function result is inserted.

 <assignment statement> ::= <variable> := <expression> | <function identifier> := <expression>

 Examples:

cCharacter := 'A', i := 0, i32GgT := a

4.14.3 Procedure Calls

 Procedure calls consist of the identifier of the invoked procedure as well as an optional
list of parameters submitted to, which are included into the round brackets (and). The
parameters must correspond to the details of the formal parameters of the procedure’s
head in type and order. There are four types of parameters to be submitted:

1. The submission by value.

2. The submission by reference (var parameter), where it has to be distinguished
between typed and untyped parameters. For typed parameters internally a pointer is
submitted which will be de-referenced automatically at every access within the
procedure, while untyped var parameters will submit a tstUArg structure as value
(with type and pointer).

 Page 25

POOL Language Description of POOL

3. The submission of an unspecified list.

4. The submission of the empty parameter. (The empty parameter is permitted only for
untyped parameters, e.g. within the list of a variable number of parameters, see also
section 'Procedure Declarations'.)

 <procedure statement> ::= <procedure identifier> <actual parameter list> |

<function identifier> <actual parameter list> |
procedure (<function identifier> <actual parameter list>) |
<object variable> . <method identifier> <actual parameter list> |
inherited <method identifier> <actual parameter list> |
<method identifier> <actual parameter list> |
<object type identifier> . <method identifier> <actual parameter list>

 <actual parameter list> ::= <empty> | (<actual parameter> { , <actual parameter> })

 <actual parameter> ::= <expression> | <variable> | <empty>

 <method identifier> ::= <procedure identifier> | <function identifier> | <constructor identifier> |
<destructor identifier>

 Limiting to the definition above functions may be used as procedures only if this syntax
extension has been switched on by the compiler switch $IFR (ignore function result). In
addition, method calls without a preceding object variable are possible only within the
methods of the object type in question or one of the descendants.

 Examples:

vPrintXY (1,10,"Hello World"),
toFather.Draw, procedure(i32IntFunc(a,b,c)), inherited poInit(x)

4.14.4 Function Calls

 The call of functions is carried out analogously to that one of the procedures. Unlike the
procedures the functions return, however, a function value which can be used as a data
source in assignments and terms. The equal restrictions as above apply to method calls.
Thereby it has to be taken into account, that no procedures and destructors are allowed
(destructors are always procedures) and constructors always, i.e. independently from
the compiler switch $IFR, can be used either as procedures or as functions of the type
Pointer.

 <function designator> ::= <function identifier> <actual parameter list> |

<object variable> . <method identifier> <actual parameter list> |
inherited <method identifier> <actual parameter list> |
<method identifier> <actual parameter list> |
<object type identifier> . <method identifier> <actual parameter list>

 Page 26

POOL Language Description of POOL

 Examples:

a := i32Maximum (a, b);
if inherited poInit(x) <> nil then ...

4.14.5 Type Transformations

In principle, there are two classes of type transformations: Implicit and explicit type
transformations. The explicit type transformations disintegrate into the two ways of the
direct and the indirect type transformation.

Implicit type transformations take place (see above) at assignments by the compiler
automatically. The destination variable determines the type of the result. The trans-
formation is only possible between assignment compatible types. It is supervised by the
compiler, whether the assignment is allowed. The compiler also decides itself, whether
a real internal transfer function has to be used or whether the transformation by a direct
data take-over is possible. As a rule, this kind of type transformations is uncritical and
straightforward.

If the result type is not known, e.g. at the submission of a value into an untyped list
(such as at the Write function) one has to produce consciously the desired type
information divergently from the original type, for example the real output of an ordinal
value by multiplication by 1.0 or addition with 0.0.

 Work with explicit type transformations (type casts) can be very advisable, it is,
however, also dangerous, since the examining possibilities of the compiler are limited
hereby or even pried out.

 <typecast> ::= <type identifier> (<variable>) | <type identifier> (<expression>)

 The direct type transformations are temporary, i.e., in the instant of its application, they
only have an effect on the argument within the simple statement in which they are.
There are two types of direct type transformations. The first type allows the
transformation of one variable of a certain type into another type. At this way of
transformation the two types must have exactly the same size (in bytes). Structured and
unstructured types may be combined similarly, the result can be used in all respects like
a variable of the destination type, i.e. qualifiers also may follow.

 Caution: At this kind of type transformation merely the memory contents of the
original variables are interpreted in the way of the type cast over. In the following first
example, no real correspondence of an integer value arises from that. Therefore the
result of the operation is generally senseless in this example. The example is listed only
here to clarify how mercilessly type casts are executed and that caution is advised with
their use.

 Page 27

POOL Language Description of POOL

 Examples:

r := Real32 (l); { r: Real32; l: Int32; }
c := Char (b); { c: Char; b: Byte; }
i := Int16 (w); { i: Int16; w: Word; }

 By the second way of direct type transformations values which also may be the results
of terms and variables of different sizes are converted. For this transformation a suitable
transfer function is used by the compiler, therefore this function is possible only with
the predefined ordinal types and the result is always a value. This transformation can
bring about a shortening or also an extension of the original value if the quantity of the
specified type is unequal to that one of the expression. With extension of values the
sign is kept, thus also the value for signed destination types, with shortenings
necessarily not.

 Examples:

i := Int16 (65535); { results in −1 }
i := Int8 (-129); { results in 127 }
i := Int16 (b); { b (Byte) will be extended to 16 Bits }
i := Int16 (l); { l (Int32) will be cut to 16 Bits }

 Remark: Type casts applied to the results of functions are allowed only when the
destination type is the type of a permissible function result.

 The form of the indirect type transformation finally suspends all control possibilities of
the compiler. It only has an effect on variables and is carried out over the detour of the
type transformation of a temporary pointer. It is not language elements and therefore is
listed here only to complete the picture.

 Example:

type tpWord = ^Word;
...
w := tpWord(@axData[n])^;

 In this example a complete data word is read from the field named Data at the position
of the n-th component and this one is assigned to the variable w. Therefore the address
of Data[n] is investigated first, this then is understood as a word pointer and in
conclusion the so referenced data word is read from the field.

 Page 28

POOL Language Description of POOL

4.14.6 Control Statements

 The control statements influence the process of structured statements. While break
terminates loop executions of the nearest for, repeat or while command, return leads to
the exit of the current subroutine level, namely the executing function or procedure.
continue skips the rest of the loop kernel and starts the next loop execution if applicable.
Beyond that there are some special break and continue commands corresponding to
every kind of loop in order to be able to leave loops in most cases even from deeper
levels without executing goto commands (POOL has no goto, only SetJump and
LongJump are supported).

 <control statement> ::= break | breakfor | breakrep | breakwhile | continue | contfor | contrep |

contwhile | return

4.14.7 Structured Statements

 Structured statements are constructions arranged from other statements which are
executed sequentially, either conditionally or repeating.

 <structured statement> ::= <compound statement> | <conditional statement> |

<repetitive statement> | <with statement>

4.14.8 Sequential Statements

 Sequential statements are exactly executed in the order in which they were written. A
group of sequential statements is embraced by the keywords begin and end.

 <compound statement> ::= begin <statement list> end

 <statement list> ::= <empty> | <statement> { ; <statement> }

4.14.9 Conditional Statements

 Conditional statements result in the branch of the program depending on the result of
the conditional expression.

 <conditional statement> ::= <if statement> | <case statement>

 Page 29

POOL Language Description of POOL

4.14.9.1 if Statement

 The if statement allows the execution of a statement if the test condition produced the
Boolean value "true". Provided that an else construct exists, these statements are
executed in the "false" case.

 <if statement> ::= if <expression> then <statement list> endif |

if <expression> then <statement list> <else construct> endif |
if <expression> then begin <statement list> end |
if <expression> then begin <statement list> end else <statement>

 <else construct> ::= else <statement list> | elseif <expression> then <statement list> |
elseif <expression> then <statement list> <else construct>

 For the concatenation of equivalent conditional branches the use of the keyword elseif is
recommended. It equals to the separated notation else if known from Pascal, it avoids,
however, the collection of endifs with which every single if statement must be
completed. The syntax without endif is thought only to the simpler porting of Pascal
programs and as a concession to Pascal developers too, however, if <expression>
then <statement> is illegal under all circumstances. If no compatibility is necessary for
Pascal, elseif and endif should be used generally, since the program structure gets even
clearer so.

 Example:

if a > 0 then
 Write ('+');
elseif a < 0 then
 Write ('-');
else
 Write (' ');
endif;

4.14.9.2 case Statement

 The case statement consists of an expression as a selector and a following list of
statements which are indicated by a list of constants of the selector type each. The
statement is executed respectively whose constant is identical to the contents of the
selector.

 <case statement> ::= case <expression> of <case list element> { ; <case list element> }

<endcase> | case <expression> of <case list element> { ; <case list element> }
else <statement list> <endcase>

 <case list element> ::= <case label list> : <statement>

 <case label list> ::= <case label> { , <case label> }

 <case label> ::= <ordinal constant>

 Page 30

POOL Language Description of POOL

 <endcase> ::= end | endcase

 The same remarks are for the syntax without endcase as mentioned for if.

 Example:

case cCommand of
 'A': vAbbort;
 'R': vRetry;
else
 vContinue;
endcase;

4.14.10 Repetitive Statements

 By repetitive statements other statements become executed in a loop as long as the
condition is fulfilled with regard to their execution. The two loop types repeat and while
are different essentially in this, whether the loop condition shall be checked
respectively before the execution of the loop body or after this. for makes the execution
of a simple counted loop possible.

 <repetitive statement> ::= <repeat statement> | <while statement> | <for statement>

4.14.10.1 repeat Statement

 The repeat statement executes the loop body once in every fall before it checks the
condition, whether the loop shall be continued. Unlike the while loop construction the
until condition does not formulate a continuation but a break criterion.

 <repeat statement> ::= repeat <statement list> until <expression>

 Example:

repeat
 a := a ∗ 1.2 + 1;
until a > 2000;

4.14.10.2 while Statement

 At the while statement the loop body becomes executed as long as the condition
expression produces the Boolean value "true". If the condition is not satisfied already at
the first time, then the loop body is not executed at all.

 Page 31

POOL Language Description of POOL

 <while statement> ::= while <expression> do <statement list> endwhile |

while <expression> do begin <statement list> end

 For the syntax without endwhile the same remarks apply as mentioned for if.

 Example:

while not boEndOfInput do
 vReadCharacter;
endwhile;

4.14.10.3 for Statement

 The for statement allows the repetition of statements if the number of loops is known in
advance.

 <for statement> ::= for <control statement> do <statement list> endfor | for <control statement>

do begin <statement list> end

 <control statement> ::= <control variable> := <for list>

 <for list> ::= <initial value> to <final value> | <initial value> downto <final value>

 <control variable> ::= <variable identifier>

 <for count> ::= <expression>

 <initial value> ::= <expression>

 <final value> ::= <expression>

 The number of loop executions is calculated once at the beginning as an Int32 type out
of the difference between <initial value> and <final value>, thus the expressions have to
result in ordinal types, except DWord, (and must be assignment compatible to the
control variable, of course). The control variable will never be affected by the loop, but
merely incremented (to) or decremented (downto) at every loop’s execution behind the
list of statements. Therefore assignments to the control variable do not influence the
number of loops, but can cause the control variable running out of the given limits. For
that reason and because the internal treatment of the for loop can change in other
compiler implementations, those assignments are acceptable only just in case.

 For the syntax without endfor the same remarks apply as mentioned for if.

 The statement
 for i := Expr1 to Expr2 do StatementList endfor;

 Page 32

POOL Language Description of POOL

 thus leads to the following construction:

Temp := Ord(Expr2)-Ord(Expr1)+1;
while Temp>0 do
 Dec(Temp);
 StatementList;
 Inc(i);
endwhile;

 Example:

for i := i-1 to i+10 do
 Write(' ',i);
endfor;

4.14.11 with Statement

The last one of the structured statements, the with statement, sets the validity range
(scope) of identifiers. The effect consists that the fields and methods of the structured
variables listed within the with statement can be referenced by the mere name of their
identifiers. The identifiers in the statements section are then searched in the named
spaces of all given variables, starting from the innermost. Field or method names
therefore hide all fields, methods, variables etc. of identical names in the enclosing
name spaces, to which the access is merely possible with their full names like
<module name>.<variable identifier>. The declaration of a list of variables is equivalent to
a corresponding number of interlocked with directives, from which follows that the
name space of any variable is valid also for all other variables in the list. If the
addressing of a record or object variable requires the indexing of an array or the
calculation of a pointer address, the regarding action takes place before the statement
section, e.g. the assignment to a pointer variable RecPtr in the statement section doesn’t
change the reference established by with RecPtr^ do.

 <with statement> ::= with <record or object variable list> do <statement list> endwith |

with <record or object variable list> do begin <statement list> end

 <record or object variable list> ::= <record or object variable> { , <record or object variable> }

 <record or object variable> ::= <record variable> | <object variable>

 For the syntax without endwith the same remarks apply as mentioned for if.

 Example:

with Data do
 stR.bA3 := 5; { Data.R.A3 }
 abB[2] := 0AAh; { Data.B }
endwith;
pstRecPtr := @stRec1;
with pstRec^ do
 bA := 0; { Rec1.A }

 Page 33

POOL Language Description of POOL

 pstRec := @stRec2;
 bA := 0; { still Rec1.A, not RecPtr^.A !!! }
endwith;

4.15 Procedure Declarations

 With procedure declarations whole program parts are separated from the calling
program and given an identifier by which they can be invoked any time.

 <procedure declaration> ::= <procedure heading> { <procedure modifier> ; } <block> |

<procedure heading> forward ; | <procedure heading> external <unsigned integer> ;

 <procedure modifier> ::= WITHOPT

 <block> ::= { <definition and declaration part> } <statement part>

 <definition and declaration part> ::= <constant definition part> | <type definition part> |
<variable declaration part> | <procedure and function declaration part>

 The procedure header consists of the identifier with which the procedure is called and
- provided that available - the definition of the formal parameters which takes over the
role of local variables. The declaration with forward allows to declare the procedure
block with an abbreviated or complete header in later passages of the module which is
necessary particularly at procedures and functions that invoke each other. All
procedures, functions and methods in the public section of modules (public) and in the
type definition of objects are implicitly declared forward unless they are explicitly
declared external. A procedure block therefore can be placed exclusively also in the
non-public part of modules (private). The declaration with external <unsigned integer>
indicates the compiler that the regarding procedure, function or method doesn’t exist in
POOL code, but has to be invoked as a C function with the given index. Due to
different invoking mechanisms no addresses can be gained from external procedures
etc., they can not be used as virtual methods and after forward (explicit or implicit)
external is no longer allowed.

 The listed procedure modifiers are some kind of compiler switch with a restricted
domain on the procedure in question.

 <procedure heading> ::= procedure <identifier> ; |

procedure <identifier> (<formal parameters>) ;

 <formal parameters> ::= <formal parameter declaration> { ; <formal parameter declaration> } | {
<formal parameter declaration> ; } ..

 <formal parameter declaration> ::= <parameter list> : <type identifier> | var <parameter list> :
<type identifier> | var <parameter list>

 <parameter list> ::= <identifier> { , <identifier> }

 Page 34

POOL Language Description of POOL

 A parameter group without a preceding specification contains only members who are
submitted by their value alone (val parameter). Parameters with the specification var are
only referenced by their address and also may be untyped. As the last or the only one
parameter .. can represent an untyped parameter list. Only untyped parameters can
remain empty at the call. Untyped var parameters are submitted as val parameters
<parameter identifier>: tstUArg, for parameter lists in addition to that one val parameter
pstVAStart: tpstVArg.

 Hint for C programmers

 Different from C, where parameters can be submitted only “by value”, what requires
the use of pointers in many cases, POOL provides var parameters. E.g. in such cases
where pointers have to be used in C there is no necessity in POOL or the pointer has to
be de-referenced.

 The definition and declaration part of procedures contain information which have - like
the formal parameters - an only local validity range within the procedure.

 Local variables initialise always to zero, i.e. strings are empty, Booleans are „false“,
pointers are „nil“, integers and reals are 0. Although this initialisation costs processing
power, the decision was made at the conception of the POOL system to avoid harmful
mistakes from un-initialised data structures that often happen in practise. One of the
major reasons for this decision was primarily the introduction of dynamic strings at
which the access would lead to fatal aborts due to un-initialised internal pointers.

 <constant definition part> ::= <empty> | const <constant definition>{; <constant definition>};

 <type definition part> ::= <empty> | type <type definition>{; <type definition>};

 <variable declaration part> ::= <empty> | var <variable declaration>{; <variable declaration>};

 The statements section finally contains the executable subroutine of the procedure. The
call of the procedure within its own statements section leads to recursion and is
expressly allowed.

 Examples:

procedure vCountIntParams(..);
var
 n: Int16;
 pstVT: tpstType;
begin
 while pstVAStart<>nil do
 pstVT := pstVAStart^.pstType;
 if (pstVT<>nil) and (pstVT^.enTypeClass=nenTCInteger) then
 Inc(n);
 endif;
 pstVAStart := PVANext(pstVAStart);
 endwhile;
 { Rem.: This version does not support embedded lists or untyped }
 { var parameters, so normally VAFirst and VANext is used! }
 Writeln ('vCountIntParams: ',n,' integer parameters found');
end; { vCountIntParams }

 Page 35

POOL Language Description of POOL

procedure vUpCaseStr (var cs: CharString);
var i: tSize;
begin
 for i := 0 to Length(cs)-1 do
 cs[i] := ChUpper(cs[i]);
 endfor;
end; { vUpCaseStr }

4.16 Function Declarations

 Functions represent - exactly like procedures - subroutine parts which, however, give
back a calculated value, unlike the latter. Function values therefore can be elements of
terms or can be assigned to variables of equal type. Assignments to a function identifier
are allowed only within the function themselves, this respectively last assigned value
before the end of the statements section is then the result of the function. So at least one
assignment should occur in every possible branch of the statements section, yet this is
not checked by the compiler at present. The function declaration corresponds exactly to
the declaration of the procedures, with the exception that an additional result type must
be specified.

 <function declaration> ::= <function heading> { <function modifier> } <block> |

<function heading> forward ; | <function heading> external <unsigned integer> ;

 <function modifier> ::= BCSTR | IFR | WITHOPT

 <function heading> ::= function <identifier> : <result type> ; |
function <identifier> (<formal parameters>) : <result type> ;

 <result type> ::= <type identifier>

 The result type of a function is restricted to unstructured types and the string type. The
use of a function within its own statements section leads to recursion and is expressly
allowed.

 The given function modifiers are a kind of compiler switch with a restricted domain on
the function in question.

 The modifier BCSTR indicates functions with parameters which are defined by the type
CharString which, however, shall work also with ByteStrings (e.g. for Length, Copy,
Delete etc.). A function result defined as CharString is then assignment compatible to
ByteStrings, too. In doubt the result of such a function remains a CharString, though.

 The modifier IFR indicates functions, their use as procedures shall be allowed, that is
without the use of the function result (IFR = Ignore Function Result).

 Examples:

function i16Max (a,b: Int16): Int16;
begin
 if a>b then i16Max := a
 else i16Max := b; endif;

 Page 36

POOL Language Description of POOL

end; { i16Max }
function Copy (bcs: String; xoIndex, xoCount: tSize): String;
 external 1; bcstr;

4.17 Method Declaration

 The declaration of a method within an object type (class) corresponds, except as
external, to a forward declaration, the just defined object type is yet allowed as a
parameter.

 After the declaration of the object type any method has to be implemented by it’s
qualified method identifier (<object type identifier>.<method identifier>) within the same
scope, but outside of the object type definition in the private section of the module. The
implementation follows the rules of procedure or function declarations, where the
keyword procedure has to be replaced by constructor or destructor for constructors and
destructors and virtual methods have to be marked with the keyword virtual.

 <method declaration> ::= <method heading> <block> | <method heading> virtual ; <block>

 <method heading> ::= function <qualified method identifier> ; | function
<qualified method identifier> : <result type> ; |
function <qualified method identifier> (<formal parameters>) : <result type> ; |
procedure <qualified method identifier> ; | procedure <qualified method identifier>
(<formal parameters>) ; | constructor <qualified method identifier> ; | constructor
<qualified method identifier> (<formal parameters>) ; | destructor
<qualified method identifier> ; | destructor <qualified method identifier>
(<formal parameters>) ; |

 <qualified method identifier> ::= <object type identifier> . <method identifier>

 All methods are automatically (but hidden) declared with the parameter oSelf before all
given parameters. At every call one object of the current or the derived type is
submitted like a var parameter (var oSelf:<object type identifier>). Within the entire
method block all identifiers first are searched in the name space of oSelf, as if the
method block resided in a with directive of the form with oSelf do ... endwith. For that
reason oSelf ist not allowed as an identifier for components or parameters and leads to
the error message „Duplicate identifier: oSelf“.

 Static methods can be defined differing by their descendents, but have to remain static.
If otherwise the object is submitted as one of it’s ancestors, e.g. in inherited methods, in
this case the methods of the ancestor will be used!

 Virtual methods are different from static methods in a way, that they are usually
invoked indirectly over a pointer in the object itself (via the virtual methods table
VMT). This mechanism causes, that also out of methods of an ancestor the virtual
method of the descendants are invoked, if the current object variable (oSelf) is such a
descendant. Virtual methods with a common denominator must therefore be declared
also in the complete family tree with an identical head.

 Page 37

POOL Language Description of POOL

4.17.1 Method Calls

Call of dynamic methods:
 <instance>.<method_name>: <instance>.VOT^.VMT[method_number] (<instance>)

Call of static methods:
 <instance>.<method_name>: <type_of_instance>.method_name (<instance>)

 (<type_of_instance> ist the declared type of the instance, regardless from the
current value, who can be a descendant!)

Static call of methods within methods:
 inherited <method_name>: <type_of_ancestor>.<method_name> (oSelf)

 (looks for the latest ancestor that implements the method)

 <object_type>.<method_name>: <object_type>.<method_name> (oSelf)

 (<object_type> is the current type or type of an ancestor!

 A preceded module name is allowed with <object_type> only!)

Call of dynamic methods within methods:
 <method_name>: oSelf.VOT^.VMT [method_nummer] (oSelf)

 oSelf.<method_name>: oSelf.VOT^.VMT[method_nummer] (oSelf)

Call of static methods within methods:
 <method_name>: <current_object_type >.<method_name> (oSelf)

 oSelf.<method_name>: <current_object_type >.<method_name> (oSelf)

4.17.2 Constructors and Destructors

Strictly speaking all advantages of object oriented languages are utilizable also without
the semantic support of object types. Anyway all structures connected with objects are
dissolved internally by the compiler into usual data types as well as pointers to data,
functions and procedures. The advantage of the object orientation lies, however, in the
more favourable notation and readability of the programs as well as in the submission
of standard tasks already by the compiler which must be written down otherwise with
difficulty. Nevertheless it must not be forget that objects are data structures themselves,
these will completely or partly created and removed again dynamically. Exactly like
pointers which must be initialized and accompanying memory areas must be requested,
this work must be carried out for objects also. The POOL compiler supports the user by
special types of methods with the names constructor and destructor.

 Page 38

POOL Language Description of POOL

 Constructors and destructors are special procedures, since for the extended syntax of
New and Dispose by implication additional parameters are submitted, and can be used as
a function of the type Pointer. In the following description of the calling mechanism
poSelf represents the pointer, that will be submitted for the var parameter oSelf.

4.17.2.1 Constructors

 As all objects are derived from toRoot, there is at minimum the basic constructor poInit
of this object.

 The constructor is always static, since at calling time yet no VMT exists (the
initialisation of the VOT/VMT in particular is one of the reasons why special
constructors must have been introduced)!

 Pre-created objects (const or static) are initialised already and can be used immediately
for that reason. However, only the fields (including of the hidden VOT field) become
pre-created but no constructors are invoked! So pre-created objects are only sensible in
simple falls. E.g. mutexes and events are not permissible as pre-created constants which
the compiler, however, cannot check!

 Not pre-created objects (local ones also) must always become initialized with a
constructor call before use and, after which, de-initialised with a destructor call again!
Since in POOL all data are erased and the destructor also erases the object, erased data
are presumed for the constructor. If the data are not erased, e.g. also at multiple
constructor calls without previous destructor call, nil (and EINVAL) is given back as an
error and the object does not change (at least if all constructors are built up correctly
and fields change only after a successful call of an inherited constructor). In case the
data area of an object is still used otherwise, e.g. if the object stands in the variants part
of a structure, the application must erase the "superposed" fields explicitly before it
calls the constructor!

 Any constructor has two invisible parameters in addition to oSelf, namely ?boHeapObj
and ?pstVOT, as well as an invisible prologue, that, if applicable, requests memory for
the object, and one invisible epilogue, by which the memory for the object is released
again.

 New (poObj, poInit(...)) compiles to poObj := <current_object_type>.poInit (nil, true,
<current_object_tpye >, ...). I.e. poInit will be called by poSelf=nil and ?boHeapObj=true.
After that poInit must request the needed memory in the invisible prologue (it’s size is
?pstVOT^.xoSize) and must return a pointer to the new released memory area (or nil e.g.
at lack of memory). Before return the resulting variable has to be checked as well, and,
in case of an error (result = nil), the memory has to be released again. The invisible
VOT field and the VMT also initialises in toRoot.poInit (by oSelf.pstVOT := ?pstVOT).

 poObj^.poInit (...) compiles to <current_object_type.object_type>.poInit (poObj, false,
<current_object_type>, ...), the constructor therefore does not execute additional
functions.

 Page 39

POOL Language Description of POOL

 The constructor is always a function which gives back a pointer to the object or nil at
error. For most of the objects the only possible errors are lack of memory as a result of
the call via New (poObj, poInit) or multiple constructor calls without destructors in
among them. The result of the constructor at objects not created dynamically(!) can be
ignored for objects at which there really are no other errors (therefore the constructor is
also marked with "ifr" internally). In methods of the object, however, the result may be
never ignored because the methods must work also for objects created dynamically, of
course. In any case broader error possibilities should always be documented explicitly
at the constructor!

 Each constructor has to call explicitly one of the inherited constructors (usually with
inherited) before the object can be used (because of toRoot one exists in any case). Since
parameters still must be checked in case before and since an object can have several
constructors, this cannot be made automatically. At the end of the constructor, however,
is checked, whether the object was really initialized, and, if necessary, will be aborted
with error message.

 Unlike normal pointer functions, where the result is initialised automatically to zero,
the result := nil has to be set explicitly, because the invisible constructor prologue leaved
the result already set.

 Constructor calls for oSelf (e.g. inherited poInit or toRoot.poInit) are allowed in the
constructor itself only. Constructor calls with type casts, however, (e.g.
tpoRoot(@oSelf)^.poInit) are allowed, but sensible only in extraordinary cases, as here not
the type of oSelf, but the casted type is applied in the object.

 Constructor calls for oSelf with object type given (e.g. toRoot.poInit) are useful only in
case constructors of ancestors shall be skipped. At changes of the object hierarchy those
calls possibly have to be adapted by hand and are therefore not recommended!

 Local object variables (except static) may be used only within the thread they belong
to, in particular the initialisation (constructor call) is allowed in this thread exclusively
(e.g. it is forbidden to write the address in a global variable and to call a constructor by
this variable out of another thread).

The simplest constructor contains only the call of the inherited constructor, e.g.
poInit := inherited poInit (a, b);. Such an (actually empty) constructor is then superfluous,
though, too.

After an error from the inherited constructor (e.g. inherited poInit = nil) no destructor must
be called, since this would cause an avalanche of unreasonable destructor calls. In
advance of the call of the inherited constructor usually no dynamic data become
assigned, but if so, they still have to be released.

constructor toObj.poInit (i32DTms: Int32);
begin
 { Init of the ancestors }
 if inherited poInit=nil then
 poInit := nil;
 return;
 endif;
 { Own initialisation }
 oSelf.i32DT := i32DTms;
 { Remark: oSelf. can be omitted, but with oSelf the context is much more obvious }

 Page 40

POOL Language Description of POOL

 { ... (other code) }
end;

A constructor in which further (own) errors can occur must tidy up its legacy and in any
case also invoke a destructor. Normally the clean up should be done by the destructor
call, if not, however, the own destructor should be adequate extended or an equivalent
own destructor has to be introduced, respectively!

constructor toObj.poInit(i32DTms: Int32);
begin
 { Init of the ancestors }
 if inherited poInit=nil then
 poInit := nil;
 return;
 endif;
 { Own initialisation }
 repeat { (for break at error only) }
 oSelf.i32DT := i32DTms;
 New(oSelf.pabArrayPtr1);
 if oSelf.pabArrayPtr1=nil then
 break; { Error }
 endif;
 New(oSelf.pabArrayPtr2);
 if oSelf.pabArrayPtr2=nil then
 break; { Error }
 endif;
 { ... (other code) }
 return; { Init successful }
 until true;
 { Clean up }
 vDone;
 { Error return }
 poInit := nil;
end;

4.17.2.2 Destructor

Since all objects are derived from toRoot, there is always at least the base destructor
"vDone" from this object. This destructor is virtual and releases all contained dynamic
strings if necessary and erases then the memory area of the object variables. However,
the destructor of the object which also has created these data must always take care of
possible dependent dynamic data structures.

The standard destructor vDone is always the first virtual method of all objects and can
be invoked also at not initialised (but cleared) objects, either directly or by Dispose (in
which case nothing will be executed). This special treatment primarily makes the
clearing works easier, e.g. in vDeinit.

The destructor can be both a static or dynamic (virtual) method. Like ordinary methods
those of same names must have always the same properties. Normally it is not even
meaningful to define a static destructor, because it can be guaranteed for virtual
methods only that actually the correct method is invoked instead of an ancestor’s
method!

 Page 41

POOL Language Description of POOL

 In addition to oSelf each destructor has one invisible parameter, ?boHeapObj, as well as
an invisible epilogue in which by case the occupied memory for the object is released
again.

 Dispose (poObj, vDone) is assembled to poObj^.vDone (poObj, true); poObj := nil.
poObj^.vDone is therefore called with poSelf = poObj and ?boHeapObj=true. As a result
vDone has to release the memory before return.

 poObj^.vDone is converted to poObj^.vDone (poObj, false), thus the destructor doesn’t
execute additional functions.

Any object has to be de-initialised after it’s use by a destructor call as well as static an
local objects!

The simplest destructor contains only the call of the inherited destructor, e.g. "inherited
vDone;". Such a destructor, however, is superfluous in most cases, because the compiler
invokes the method of an ancestor automatically, anyway.

Every destructor has to call one of it’s inherited destructors (usually by inherited) after
finishing it’s own clean up work (due to toRoot there is certainly one). Since there can
be multiple destructors, this cannot be automated. At the end of the destructor,
however, it will be checked, if the object has been de-initialised, otherwise an error
abortion occurs.

destructor toObj.vDone;
begin
 { Clean up }
 Dispose (oSelf.pabArrayPtr1);
 Dispose (oSelf.pabArrayPtr2);
 { ... (other code) }
 { Done of the ancestors }
 inherited vDone;
end;

4.18 Program Modules

 Data, procedures and functions are summarized to so-called modules. Modules have the
task of implicitly extending all identifiers declared in them by the module name.
Through this there is a distinction possibility between identical named identifiers. Such
extended identifiers are called qualified identifiers in general.

 <module> ::= <module heading> <block> end.

 <module heading> ::= module <module identifier> ;

 The referencing of qualified identifiers from other modules happens similar to the
referencing of record fields, see chapter 4.11 'Use of variables, fields and constants'.

 Page 42

POOL Language Description of POOL

 Example:

module TEST_BENCH; {Declaration}

import
 IBUS, DIAG; {In this module needed modules}

procedure vStart; {Exported prototype}

private {Start of the private section}

procedure vStart; {Statements section of the several functions}
begin

end;

begin {Initialisation part of the module}
end. {TEST_BENCH}

TEST_BENCH.vStart; {Referencing of a function/procedure}

 Modules are not tied to files in principle. The current implementation of the compiler
expects, however, only one module per file. Module and file name should agree fore the
sake of simplicity here. The statements section of the module itself serves to
initialization.

4.18.1 Validity Scopes

 The validity scopes of identifiers within modules can be restricted.

 <scope> ::= <public scope> | <private scope>

 <public scope> ::= public <block>

 <private scope> ::= private <block>

 This allows the declaration of identifiers, which either can be referenced only within a
module (private) or also from outside of the module (public). Without a special
declaration the identifiers of a module are treated as public automatically. As long as a
procedure, function or method is not declared as external, the public part contains only
its header. The corresponding block, with a complete or abbreviated header, resides in
the private part of the module.

4.18.2 Import of References from other Modules

In order to make identifiers of other modules referencable, the foreign module must be
made accessible to the invoking module.

 Page 43

POOL Language Description of POOL

 <import directive> ::= import <module identifier> { , <module identifier> } from <file name>

 <file name> ::= <char string>

 The path given in <file name> is a constant string and may contain relative references
only. Absolute references (containing drive or host names, e.g. c:/myproject/test.pi or
//server/project/modules/test.pi) are possible only by the use of environment variables (see
below), so that POOL projects go on working, even if they have been copied to other
computers, drives or directories. If there is no file name given, the module name in
lower case letters will be inserted and extended by ".pi".

 For compatibility reasons with other file systems the given path must not contain any
\ (backslash), no : (colon) nor other special characters, but has to use / (slash) as a
directory separator.

 In the path declaration environment variables can be inserted by using the for the AIDA
system usual notation $(<env_var_name>) or $(<env_var_name>/). The second form
inserts a directory separator only if necessary, because at e.g. $(<env_var_name>)/test.pi
the file would be searched in the root directory if the environment variable was empty.
The environment variables, however, may be declared in the system conform notation,
i.e. in this case they may contain also the there decisive special characters.

 Examples:
import TEST from “test.pi”
import TEST from “../modules/test.pi”
import TEST from “$(ProjectPath/)test.pi”
 { where here ProjectPath is the name of an environment variable,
 which e.g. could refer to “C:\myproject\modules\” }

 Page 44

POOL Compiler Instructions

5 Compiler Instructions

For the control of the compiler itself instructions beyond the POOL instruction set are
used. The compiler instructions can be divided up into three classes: Switches,
parameters and conditions. Syntactical a compiler instruction is a special comment, in
which immediately after the opening comment bracket ({) the dollar sign ($) follows.
Next to that the name of the instruction follows, if applicable combined with switches
or parameters. For simple commands may be further instructions given, separated by
commas, before the closing comment bracket (}) terminates the entire command. All
instructions must be written in lower case letters.

 Some few of the compiler instructions can be utilised as function/procedure modifiers.
Syntactically their usage follows the rules of the other modifiers virtual, external and
forward, respectively applied to the function/procedure header. These compiler
instructions then are effective only locally referred to the accompanying function or
procedure.

5.1 Switches

 $cbe <+|−>

 The switch determines Boolean expressions to be evaluated completely. In contrast to
that stands the so called short cut evaluation which terminates as soon as the result of
the expression is not longer affected by further evaluation. The basic setting for this
parameter is {$cbe-}.

 $coct <+|−>

 This switch determines the compiler to interpret integer numbers with leading zeros as
octal values {$coct+} or to reject them as an error {$coct-}. Pre-setting is {$coct-}.

 Remark: The use of coct is basically not recommended. POOL supports an
unambiguous signing of octal numbers using the suffixes o or O and q or Q (Q is
supported alternatively because it looks somewhat similar to O but cannot be mixed up
as easy with 0 (Zero)).

 $zstr <+|−>

 This switch determines if the compiler allows {$zstr+} assignments of strings to
variables of the type array[0..n] of Char or if they are rejected incorrect {$zstr-}. Default
setting is {$zstr-}.

 Page 45

POOL Compiler Instructions

 $ifr <+|−>

 This switch decides if the compiles allows functions to be used as procdures {$ifr+} or
rejects them incorrect {$ifr-}. Default setting is {$ifr-}. The name stands for 'Ignore
Function Result'.

 In addition to that this switch is usable also as a function modifier.

 Remark: In order to avoid the erroneous usage of functions, e.g. like ignoring returned
error conditions, this compiler switch better should not be used. Reasons:

1. Different from C there are not many functions in POOL where it seems sensible to
ignore the function result.

2. Those few functions whose results are reasonably ignored (e.g. WriteStr etc.) are
already marked ifr.

3. In particular cases any function can be used as a procedure using the type cast
„procedure(..)“, which moreover documents that the function result was ignored
deliberately.

5.2 Parameters

 $i <file_name>

 This instruction forces the compiler to include the file named by <file_name>. All
content of this file will be inserted beginning from this instruction into the compiling
source code. No further compiler instructions are allowed here within the same
brackets. If <file_name> has no file extension, <file_name>.pool is assumed
automatically. For the file names the same rules apply as for <file_name> in the import
instruction.

 There are three limitations in the use of include files, mainly to avoid erroneous or
incomplete include files from causing error messages in other files.

1. private and public can be used as usual, but have no influence to the including file.

2. The reading file must contain a complete program block (e.g. complete function or
procedure).

3. Every with {$if...} opened section has to be closed within the same file, i.e. every
include file must contain to each {$if...} the corresponding {$endif}.

 $stklen <len>

 Using this instruction a developer can decide how much of stack space the current
module may need. If at runtime, e.g. caused by recursion, more stack memory is needed
than given, the program will abort with a runtime stack error.

 Remark: As the user can not estimate the needed stack size anyway this adjustment
should be reserved to the runtime system, that is this parameter should not be used. The
existence of this parameters is justified only for the use in „small“ (embedded) Systems.

 Page 46

POOL Compiler Instructions

5.3 Conditional Compilation

 $define <symbol_name>

 $else

 $endif

 $ifdef <symbol_name>

 $ifndef <symbol_name>

 $undef <symbol_name>

 The instructions for conditional compilation allow parts of the source code to be
included or excluded depending on the existence of the given symbols. The syntax
resembles the if instruction of POOL, where the symbols represent variables of the type
Boolean which become assigned the values true or false by {$define ...} or {$undef ...},
respectively. Corresponding to that {$ifdef ...} or {$ifndef ...} are interpreted as if ...=true
resp. if ...=false.

 Example:

{$ifdef Debug}
 Writeln('i=',i);
{$endif}
{$ifdef LittleEndian}
 type
 tstWordRec = record bLo,bHi: Byte end;
{$endif}

5.3.1 Standard Symbols for Conditional Compilation

 BigEndian

 Defined if the compiler runs on a “high byte first” byte order machine (e.g. Motorola
68000 CPU).

 DOS

 Defined if the compiler runs on a DOS machine.

 LittleEndian

 Defined if the compiler runs on a “low byte first” byte order machine (e.g. Intel 80x86
CPU).

 Page 47

POOL Compiler Instructions

 MiddleEndian

 Defined if the compiler runs on machine with this special byte order (e.g. DEC Alpha
CPU).

 POOL

 Always defined by the POOL compiler.

 UNIX

 Defined if the compiler runs on a UNIX machine.

 Page 48

POOL The POOL System Module

6 The POOL System Module

The system module holds the basic data types, procedures and functions, which are not
part of the language itself but are unrenounceable and available to every module. It
resides in lib/pool.pi and will be imported to every other module automatically. All other
libraries must be included manually. The public definitions (data types, procedures,
functions etc.) of all provided libraries can be retrieved from the online documentation.

They can also be found in the corresponding POOL include files (lib/pli/*.pli).

Note: These files are provided only as a reference, but will never be included to other
modules (unlike C header files)!

 Page 49

POOL Internal Data Representation

7 Internal Data Representation

7.1 Boolean

The data type Boolean will be stored in a single byte and can hold the both values
"false" (=0) and "true" (=1).

7.2 Char

Values of the type Char claim exactly one byte data space like the type Byte (thus
unsigned). Value range Chr(0) .. Chr(255).

7.3 Int8

The type Int8 is a signed byte between -128 until +127.

7.4 Byte

Byte types are unsigned values between 0 and up to 255.

7.5 Int16

The type Int16 covers two bytes and represents signed values between -32768 and
32767.

7.6 Word

Values of the type Word are the unsigned correspondence to Int16 in the range of
0 .. 65535 and covers two bytes, as well.

7.7 Int32

Int32 types cover four bytes, they are signed values and provide a range of
-2147483648 .. 2147483647.

 Page 50

POOL Internal Data Representation

7.8 DWord

 DWords cover 4 bytes like Int32 values and represent the range of 0 .. 4294967295.

7.9 Real32

The data type Real32 covers 4 bytes and consists of a normalised mantissa (23 Bits), a
signed exponent (8 Bits) and a sign (1 Bit).

Value range about 1,5 ⋅ 10-45 up to 3,4 ⋅ 1038, resolution 7 to 8 digits, roughly.

7.10 Real64

Values of the data type Real64 claim 8 bytes. They consist also of a normalised
mantissa (52 Bits), a signed exponent (11 Bits) and a sign (1 Bit).

Value range about 5,0 ⋅ 10-324 to 1,7 ⋅ 10308, resolution 15 to 16 digits, roughly.

7.11 Strings

 Strings in general store chains of elements of the same type (e.g. Char, Byte ...). They
also hold a length information. As POOL deals with dynamic strings, the string data is
not stored in the string variable itself, string variables moreover are represented by a
fixed data structure, that contains certain flags, the length information and also a pointer
to the data contents. Direct accesses to this structure from POOL are not legal. The
single elements of the strings are accessed as usual like an array [0..Length(Str)-1]
of <element type>, the direct addressing over the pointer will be calculated by the
compiler automatically. With e.g. @Str[i] it is made possible to retrieve the address of a
string element and the subsequent use as a pointer. Hereby it has to be considered that
each string operation may move the data content in the memory, by which the pointer
becomes invalid and further accesses might cause severe errors or program abortions.

7.12 Arrays

 Arrays cover as many data bytes in memory as the component type covers multiplied
with the number of components. Those components with the lowest index reside in
memory at lowest addresses.

 Page 51

POOL Internal Data Representation

7.13 Records

Data structures of the record type need as many data bytes as the sum of the memory
consumption of the individual field types. Fields declared first reside in memory at
lowest addresses.

7.14 Objects

Objects claim memory for their data in the same manner like records. Additionally
objects maintain a pointer to their type descriptor (VOT) by which also the
corresponding table of methods can be accessed, which again consists of pointers to the
object’s virtual methods.

7.15 Pointers

Pointer types carry the addresses of the variables they point to. They cover thus 4 bytes.

 Page 52

POOL Formatting and Nomenclature

8 Formatting and Nomenclature

 POOL follows just Pascal as an example in order to produce an easy to understand and
an also well readable source code. The especially by “real programmers“ beloved
„compact“ writing style, often coming across in C, was absolutely not intended for the
development of POOL. Besides the semantic rules POOL gives no regulations how to
write source code. Thus it’s possible to write rather awful code in POOL either. A
unique nomenclature at the naming of the identifiers as well as a consequent formatting
of the source code is a valuable contribution to the readability and clearness of the
programs. For that reasons it is more than strongly recommended to hold on to the
following rules.

8.1 Source Code Formatting

8.1.1 Headlines

The use of headlines enables the author to include additional information to the
subsequent source code, for which there is nor the suitable room neither the suitable
context within normal comments.

8.1.1.1 Module Header

 The module header contains information for the entire module. Indispensable parts are
title, module description and an up-to-date change list. The change list comprises of
version, date of change, author and a textual description of the changes. The change list
has to be ordered in a way that the latest changes lie on top of the list. This avoids at
“mature” modules the unpleasant necessity of passing the whole history before finding
the more interesting latest descriptions of changes.

8.1.1.2 Functions / Procedure / Method Headers

 Any not trivial subfunction has to be described. At more complex subfunctions it can be
even advisable to maintain the latest change description or a complete private change
list. Especially public procedure and functions must have an abstract description to
show them in the browser list.

8.1.2 Comments

The general rule reads as follows:

 Page 53

POOL Formatting and Nomenclature

 „Comment plentiful, but not senseless.“

 That is, each not trivial source line should have an explaining comment. As a rule the
comment is placed at the end of the source code line. Sometimes it happens to be
sensible to comment a couple of line at once. In this case it is recommended to place the
comment as a separate line on top of the succeeding source code lines.

8.1.3 Blank Lines

For the optical structure of the source text it is useful to insert blank lines at suitable
positions. The only objective is a good readability, thus here are still some
recommendations given:

Two blank lines should be inserted only on global, resp. top level hierarchy, e.g. before
the declaration part, consisting of const, type and var blocks, before private and before
subfunctions of highest level.

One blank line should be inserted between the const, type and var blocks of the
declaration part and to separate local subfunctions.

No blank lines should be inserted between the several declarations and instructions, no
between local declaration and instruction parts, not necessarily between prototypes,
unless they contrast thematically.

8.1.4 Indentation

Indentations have to be done in POOL in general by two blanks. Although POOL
hereby gives no regulations this has been proven a good compromise between
distinctive separation and good readability on the other hand.

8.1.4.1 Modules

 The module keyword module is always placed to the first column of the source code.
The same applies to includes and the section designators privat and public.

8.1.4.2 Declaration Area (const, type, var)

 The declaration area designators const, var and type are placed on the same indentation
level as the corresponding context, i.e. the designators which belong to the module
context or to subfunctions of the highest level start in the first column. In contrast to
that the actual declarations will be indented by two blanks.

1234567890123456789012345678901234567890123456789012345678901234567890

 Page 54

POOL Formatting and Nomenclature

var
 i: Int16;
 r: Real64;
 i32: Int32;

 The : (colon) of the variable declaration are considered to be more related to the
symbolic name of the variable than to the given type (this is in assimilation to the label
writing style in assembler language – particularly this is being expressed in some case
constructs). For this reason there is no space between the variable name and the colon,
but at minimum one blank between the colon and the given type. POOL itself make
here no regulations and accepts of course also the sometimes the popular style where
the colons - as it were a vertical line - always stand one below the other.

8.1.4.3 Structures

 Structures indent hierarchical corresponding to their construction, i.e. each substructure
indents by two blanks to the right. The for records imperative end places in the same
column as the corresponding identifier. The keyword variant places to the same column
as variables of the same level, but the variants themselves indent in relation to the
keyword by two columns. Since the variants themselves must be inserted enclosed in
brackets and since lines should never begin in even columns, one blank each should be
inserted after the opening or before the closing bracket.

 Example:

1234567890123456789012345678901234567890123456789012345678901234567890

var
 stRec1: record
 i32Alpha: Int32;
 variant
 (a,b,c: Int16);
 (d,e,f: Word);
 (stRec2: record
 i,j,k: Int16;
 r: Real64;
 end)
 end;

8.1.4.4 Objects

 Objects, as also being structured data, get the same construction like records. The
methods that belong to the object start from the highest level column of the object’s
data structures, i.e. they are indented by two columns in relation to the identifiers of the
object.

 Page 55

POOL Formatting and Nomenclature

8.1.4.5 Procedures, Functions, Methods

 The formal declaration of the procedure and function head lines starts from the first
column of the source code, unless it is about a pure local subfunction. In the last case
the entire construct will be indented by two columns in relation to the higher context.

 The unavoidable begins and ends of any subfunction place to the same column as the
head line. In relation to that the lines of the instruction block are indented by two
columns.

 For a better readability blank characters are inserted before any opening bracket, after
each ; (semicolon) at the declaration of formal parameters and after each : (colon). No
blank characters should be inserted before a : (colon) and at the enumeration of
identifiers to the same type.

 At the call of subfunctions blank characters are inserted before the opening bracket as
well as after every single parameter, except before the closing bracket. For functions
that represent as it were numerical values within arithmetical expressions the blank
character is omitted, e.g. like „Length(String)“.

 Example:

1234567890123456789012345678901234567890123456789012345678901234567890

function i32Work (a,b: Int32; cOp: Char): Int32;

 function i32Add (a,b: Int32): Int32;
 begin
 i32Add := a + b;
 end; { i32Add }

 function i32Sub (a,b: Int32): Int32;
 begin
 i32Sub := a − b;
 end; { i32Sub }

begin { i32Work }
 case cOp of
 'a': i32Work := i32Add (a, b);
 's': i32Work := i32Sub (a, b);
 else
 Writeln ('?i32Work: Illegal Operator!');
 endcase;
end; { i32Work }

8.1.4.6 begin / end

 Corresponding begins and ends start always in the same column. From that follows
informally that all end designators of blocks who possess implicit begins start in the
same column as the block instruction (see while, for etc.).

 Page 56

POOL Formatting and Nomenclature

8.1.4.7 if Constructs

 The three possible elements of the if construction (if – else – endif) start each at the same
column. In relation to that the enclosed instruction blocks of the if branch and the else
branch are indented by two characters. By the way, it’s recognized a good style to
repeat parts of the decisional expression as a comment behind the closing endif.
Particularly at heavy nested if constructs this improves the readability of the source
code immensely. The same applies to the else line at complex constructions. In the
trivial example below in practice one would better do without for both.

 Remark: Please note that in contrast to Pascal (or C) the unpleasant, mostly three lines
occupying „end/else/begin“ constructs, in particular due to the in POOL imperative
endifs, are not applicable and thus the source code becomes much easier readable.

 Example:

1234567890123456789012345678901234567890123456789012345678901234567890

function i32Work (a,b: Int32; cOp: Char): Int32;
begin
 if cOp = 'a' then
 i32Work := i32Add (a, b);
 else { op <> 'a' }
 i32Work := i32Sub (a, b);
 endif; { op <> 'a' }
end; { i32Work }

8.1.4.8 while, for, repeat

 For all loop constructs the instruction block is indented in relation to the loop
instruction by two columns. The coupled loop instructions (for – endfor, while – endwhile,
repeat – until) each place to the same column.

 Example:

1234567890123456789012345678901234567890123456789012345678901234567890

function i32Multiply (a,b: Int32): Int32;
var i32Res: Int32;
begin
 if b<0 then
 b := -b;
 b := -a;
 endif;
 while b > 1 do
 i32Res := i32Res + a;
 b := b - 1;
 endwhile;
 i32Multiply := i32Res;
end; { i32Multiply }

 Page 57

POOL Formatting and Nomenclature

8.1.4.9 case

 On highest level the case construct is established like the if construct, where the case
branch accommodates all fulfillable conditions and the else branch all other not covered
cases. From that follows an indentation by two columns analogous to the if construct for
both instruction blocks. For the case constructs different cases have to be considered:

• There is a short case label and the case has one instruction only, then everything is
written to one line.

• The case label is short, but the case consists of more lines, the begin is written in
the label’s line, the following instruction block is indented by four columns and the
terminating end indents by two columns in relation to the case label.

• There is a long case label, e.g. it consists of several components, then the
corresponding instruction block begins in the following line and indents by two
columns. If there is a begin-end clause necessary the enclosed instructions become
indented another two columns.

 Aim of all the given formatting rules is to make both the case construct clearly visible
and also to emphasize the single case labels by un-indentation in relation to the
instruction parts. The below described case ‚a’ one better would write in practice in
only one line.

 Example:

1234567890123456789012345678901234567890123456789012345678901234567890

function i32Calculate (a,b: Int32; cOp: Char): Int32;
begin
 case cOp of
 'a', 'A', '+':
 begin
 i32Calculate := i32Add (a, b);
 end;
 's', 'S', '−': i32Calculate := i32Sub (a, b);
 else
 Writeln ('?i32Calculate: Illegal Operator!');
 endcase;
end; { i32Calculate }
end;

8.2 Nomenclature

8.2.1 Case Sensitivity

In contrast to Pascal POOL makes extensively use of case sensitive spelling. In the
treatment of identifiers and reserved words, however, there are some distinctions.

 Page 58

POOL Formatting and Nomenclature

8.2.1.1 Reserved Words

 All reserved words are written like described in the POOL vocabulary, i.e. the
designators of standard types in mixed spelling, all others general in lower case letters.

8.2.1.2 Identifier

 Identifiers are written in mixed spelling, as possible without inserted _ (underbars),
unless the underbar shall act as a distinctive separation or the identifier shall obtain a
module name extension or one of the agreed suffixes shall be separated. Instead of the
dividing underbar the single name parts have to be headed with upper case letters. Very
popular, but nevertheless unreasonable is the practice to separate identifiers in upper
case letters headed name parts, although the notion is of one word only in common
language. Such naming has to be avoided (wrong: stMailBox, correct: stMailbox). For
all identifiers which represent data contents the below listed prefixes have to be used
without any exception. Since prefixes always spell in lower case letters the heading
characters of the actual name of the subsequent identifier must spell at least with one
capital letter.

Excepted from the duty to use prefixes and to keep case sensitivity are trivial names
only, e.g. local temporary, counting or indexing variables, that are popular to be named
by i, j, k; a, b, c; l, m, n or x, y, z. Those identifiers must never act as global names in
the source code!

 Example:

bTerminal15
nFlag_Msk { _ due to the trailing suffix }
AWS_pstErrorMessage { _ for the leading module name }

8.2.2 Prefixes

For the type characterisation of identifiers unified prefixes have to be used. Prefixes in
general are spelled in lower case letters and lead the actual name without any additional
separators. At identifiers of complex contexts prefixes are combined where the prefix of
the most abstract designation places to the leftmost position. Used in this way prefixes
allow the knowledge of every variable’s type by simply knowing it’s name. Since the
use of prefixes is a very common stylistic element in the development of Unix software,
some few of the prefixes show distinct influences of C data types. BSK applies prefixes
consequently in the POOL library and in all the example programs. Their use is very
well-tried and is thus strongly recommended to every user. In particular the use of
prefixes helps the user by the assignment of identifiers for his data structures, because
the actual name part can be maintained, e.g. at the naming of a structure and the pointer
to it.

 Page 59

POOL Formatting and Nomenclature

 In case the actual name of the identifier stands for a POOL base type, the prefix for that
type is omitted.

 Example: ‚tpaByte’ (not tpabByte) as type of a pointer to a common array of bytes;

 Counterexample: ‚tpabCount’ must keep the ‚b’ at the end of the prefixes in order to
show that any single ‚Count’ is of type byte.

 The use of prefixes for identifiers of constants in general is left up to the user. E.g. the
circular constant ‚PI’ in correct writing had to be written ‚nrPI’, but this would never
improve readability nor adds something important to the naming. However, here also
the use of suffixes is basically recommended, where constant values should lead in with
the prefix‚n’.

 Constant values which could be also variables by their meaning an usage, do not obtain
this ‚n’ in order to be re-definable if needed without the necessity to be sought for the
use of the ‚n’ prefix.

 Pure ordinal constant values are designated by ‚n’ only.

 Local variables with trivial names like the popular ‚i’, ‚j’, ‚k’ as indexing variables may
be continued written in lower case letters and do not obtain a prefix, of course.

 The following prefixes are agreed:

 a.. array of ..
 b Byte
 bo Boolean
 bs ByteString
 c Char
 cs CharString
 dw DWord
 en (enumerating value)
 fb File of Byte (binary file)
 fc File of Char (text file)
 fi File
 h tHandle
 hs S(h)ort String (zero terminated array of short char)
 i8 Int8
 i16 Int16
 i32 Int32
 n.. (constant value)
 ls (reserved) Long String (zero terminated array of long/wide char)
 o object
 p.. Pointer (to ..)
 pv untyped Pointer (void)
 qw QuadWord
 r (arbitrary real)
 r32 Real32
 r64 Real64

 Page 60

POOL Formatting and Nomenclature

 st record (structure)
 t.. type (of ..)
 uc (reserved) UChar (unicode char)
 un variant (union)
 us (reserved) UCharString, WideString (unicode string)
 w Word
 ws WordString
 x (arbitrary type)
 xo (arbitrary ordinal)

 Examples (see Constant Definitions):

tpastScope: a Type of a Pointer to an Array of Records defining a Scope
tenNPRes: an Enumeration Type (Result of function NormPath)
nenNPOverrun: an Enumeration Element named NPOverrun
enNPRes: an Enumeration Vaiable
tpapaChar: a Type of a Pointer to an Array of Pointers to Arrays of Characters

 Page 61

POOL Literature

9 Literature

[1] Wirth, Niklaus
 Compilerbau : eine Einführung - Stuttgart : Teubner, 1977.
 (Leitfäden der angewandten Mathematik und Mechanik ; Bd. 36)
 (Teubner Studienbücher : Informatik)
 ISBN 3-519-02338-5

[2] Jensen, Kathleen - Wirth, Niklaus
 PASCAL : user manual and report.
 "Springer study edition."
 ISBN 0-387-90144-2

[3] Borland GmbH
 Turbo Pascal 6.0 Manuals

[4] Dick Pountain
 Schweizer Mittsommernachtstraum
 Niklaus Wirths Programmiersprache Oberon
 from c't 1991, issue 11, page 164
 by permission of Byte 2/91, McGraw-Hill, Inc.

[5] Albrecht, Harald
 Debug-Informationen von Turbo-C und Turbo-Pascal
 from c't 1990, issue 3, page 361

[6] Jobst, Fritz
 Compilerbau : Von der Quelle zum professionellen Assemblertext
 (Hanser Programmtexte)
 ISBN 3-446-16095-7

[7] Kernighan, Brian W. - Ritchie, Dennis M.
 The C programming language.
 Prentice-Hall International, Inc.
 ISBN 0-13-110163-3

[8] Borland GmbH
 Turbo C++ 3.0 Manuals

[9] Arno Keppke
 Just in Time
 Was Echtzeitbetriebssysteme von gewöhnlichen unterscheidet
 from c't 1992, issue 8, page 52

[..] other

 Page 62

POOL Index

10 Index

$
$cbe 45
$coct 45
$define 47
$else 47
$endif 47
$i 46
$ifdef 47
$ifndef 47
$ifr 46
$stklen 46
$undef 47
$zstr 45

@
@ (Addressing Operator) 22

^
^ (Pointer Definition) 13
^ (Pointers

De-referencing of) 19

A
Adding Operators 23
Array Type 14
Arrays 51
Assignments 25

B
Backus-Naur Notation 6
BigEndian 47
Boolean 50
Byte 50
Byte Order 47
Byte Strings 11

C
case Statement 30
Char 50
Character Strings 11
Classes 16
Comments 8
Comparative Operators 24
Compiler Instructions 45
Conditional Compilation 47
Conditional Statements 29
Constants

Definition 17
Use of 19

Constructors 39

Control Statements 29

D
Data Representation 50
Data Types 12
Destructor 42
Destructors 39
DOS 47
DWord 51

E
Expressions 20

F
Fields

Use of 19
for Statement 32
Formatting 53

begin 56
Blank Lines 54
case 58
Comments 53
Declaration Area 54
end 56
for 57
Function Header 53
Functions 56
Headlines 53
if 57
Indentation 54
Method Header 53
Methods 56
Module Header 53
Modules 54
Objects 55
Procedure Header 53
Procedures 56
repeat 57
Structures 55
while 57

Function Calls 26
Functions Declarations 36

I
Identifiers 8
if Statement 30
Import of References 44
Indexed Types 14
Int16 50
Int32 50
Int8 50

 Page 63

POOL Index

L
Literature 62
LittleEndian 47

M
Method Calls 38
Method Declaration 37
MiddleEndian 48
Modules see Program
Monadic Operators 22
Multiplying Operators 23

N
Nomenclature 53, 58

Case Sensitivity 58
Identifier 59
Prefixes 59
Reserved Words 59

Numbers 9

O
Object Types 16
Objects 52
Operators 21

P
Parameters 46
Pointer Types 13
Pointers 52
POOL 48
POOL Vocabulary 7
Procedure Calls 25
Procedure Declarations 34
Program Modules 43

R
Real32 51

Real64 51
Record Types 15
Records 52
repeat Statement 31
Repetitive Statements 31

S
Sequential Statements 29
Simple Statements 25
Simple Types 12
Source Code Formatting 53
Standard Symbols 47
Statements 25
Strings 10, 51
Structured Statements 29
Structured Types 14
Switches 45
System Module 49

T
Type Definitions 12
Type Transformations 27

U
UNIX 48

V
Validity Scopes 43
Variable

Declaration 19
Variables

Use of 19
Variant Records 15

W
while Statement 32
with Statement 33
Word 50

 Page 64

	1 Contents
	2 Change Index
	3 Introduction
	4 Language Description of POOL
	4.1 The Backus-Naur Notation
	4.2 The POOL Vocabulary
	4.3 Comments
	4.4 Identifiers
	4.5 Numbers
	4.6 Strings
	4.6.1 Character Strings
	4.6.2 Byte Strings

	4.7 Type Definitions
	4.8 Data Types
	4.8.1 Simple Types
	4.8.2 Pointer Types
	4.8.3 Structured Types
	4.8.3.1 Indexed Types (Array Type)
	4.8.3.2 Record Types
	4.8.3.3 Object Types (Classes)

	4.9 Constant Definitions
	4.10 Variable Declaration
	4.11 Use of Variables, Fields and Constants
	4.12 Expressions
	4.13 Operators
	4.13.1 Monadic Operators
	4.13.2 Multiplying Operators
	4.13.3 Adding Operators
	4.13.4 Comparative Operators

	4.14 Statements
	4.14.1 Simple Statements
	4.14.2 Assignments
	4.14.3 Procedure Calls
	4.14.4 Function Calls
	4.14.5 Type Transformations
	4.14.6 Control Statements
	4.14.7 Structured Statements
	4.14.8 Sequential Statements
	4.14.9 Conditional Statements
	4.14.9.1 if Statement
	4.14.9.2 case Statement

	4.14.10 Repetitive Statements
	4.14.10.1 repeat Statement
	4.14.10.2 while Statement
	4.14.10.3 for Statement

	4.14.11 with Statement

	4.15 Procedure Declarations
	4.16 Function Declarations
	4.17 Method Declaration
	4.17.1 Method Calls
	4.17.2 Constructors and Destructors
	4.17.2.1 Constructors
	4.17.2.2 Destructor

	4.18 Program Modules
	4.18.1 Validity Scopes
	4.18.2 Import of References from other Modules

	5 Compiler Instructions
	5.1 Switches
	5.2 Parameters
	5.3 Conditional Compilation
	5.3.1 Standard Symbols for Conditional Compilation

	6 The POOL System Module
	7 Internal Data Representation
	7.1 Boolean
	7.2 Char
	7.3 Int8
	7.4 Byte
	7.5 Int16
	7.6 Word
	7.7 Int32
	7.8 DWord
	7.9 Real32
	7.10 Real64
	7.11 Strings
	7.12 Arrays
	7.13 Records
	7.14 Objects
	7.15 Pointers

	8 Formatting and Nomenclature
	8.1 Source Code Formatting
	8.1.1 Headlines
	8.1.1.1 Module Header
	8.1.1.2 Functions / Procedure / Method Headers

	8.1.2 Comments
	8.1.3 Blank Lines
	8.1.4 Indentation
	8.1.4.1 Modules
	8.1.4.2 Declaration Area (const, type, var)
	8.1.4.3 Structures
	8.1.4.4 Objects
	8.1.4.5 Procedures, Functions, Methods
	8.1.4.6 begin / end
	8.1.4.7 if Constructs
	8.1.4.8 while, for, repeat
	8.1.4.9 case

	8.2 Nomenclature
	8.2.1 Case Sensitivity
	8.2.1.1 Reserved Words
	8.2.1.2 Identifier

	8.2.2 Prefixes

	9 Literature
	10 Index

